AC 11/05/2017 Item No. 4.183

From Co-coordinator's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated, and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai, has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's), course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of Studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enable a much-required shift in focus from teachercentric to learner-centric education. Since the workload estimated is based on the investment of time in learning, not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes. Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. **Choice Based Credit and Grading System** were implemented for First Year of Engineering (Undergraduate) from the academic year 2016-2017. Subsequently this system will be carried forward for Second Year of Engineering (Undergraduate) in the academic year 2017-2018 and so on.

Dr. Suresh K. Ukarande Coordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Preamble:

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and to achieve recognition of the institution or program meeting certain specified standards. The main-focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a student will have at the time of graduation from the program that is being accredited. Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as a Chairman, Board of Studies in Electrical Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Electrical Engineering, more than ten senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs and POs of undergraduate program in Electrical Engineering are listed below;

Program Educational Objectives (PEOs)

- ➢ Graduates will have successful career in industry or pursue higher studies to meet future challenges of technological development.
- Graduates will develop analytical and logical skills that enable them to analyze and design Electrical Systems and their Controls.
- Graduates will achieve professional skills to expose themselves by giving an opportunity as an individual as well as team.
- *Graduates will undertake research activities in emerging multidisciplinary fields.*

Program Outcomes (POs)

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Dr. S. R. Deore, Chairman, Board of Studies in Electrical Engineering, Member - Academic Council University of Mumbai

Program Structure for SE Electrical Engineering University of Mumbai (With Effect from 2017-18)

Scheme for Semester III

Course	Course Name	T (eaching Schen Contact Hours	ne S)	Credits Assigned				
Coue		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EEC301	Applied Mathematics - III	4	-	1	4	-	1	5	
EEC302	Electronic Devices and Circuits	4	-	-	4	-	-	4	
EEC303	EEC303 Conventional and Non-Conventional Power Generation		-	1	3	-	1	4	
EEC304	Electrical and Electronics Measurement	4	-	-	4	-	-	4	
EEC305	Electrical Machine – I	4	-	-	4	-	-	4	
EEL301	Electrical and Electronics Measurement Lab	-	2	-	-	1	-	1	
EEL302	Object Oriented Programming and Methodology Lab	-	4#	-	-	2	-	2	
EEL303	Electronics Lab - I	-	2	-	-	1	-	1	
EEL304	Electrical Machine Lab- I	-	2	-	_	1	-	1	
Total		19	10	2	19	5	2	26	

Out of four hours, 2 hours theory shall be taught to entire class and 2 hours practical in batches

Examination Scheme for Semester III

		Examination Scheme												
			The	eory										
Course Code	Course Name	External (UA)		Internal (CA)		Term Work		Practical		Oral		Pract./Oral		Total
		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC301	Applied Mathematics - III	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC302	Electronic Devices and Circuits	80	32	20	8	_	-	-	_	_	-	-	-	100
EEC303	Conventional and Non- Conventional Power Generation	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC304	Electrical and Electronics Measurement	80	32	20	8	_	-	-	-	-	-	-	-	100
EEC305	Electrical Machine –I	80	32	20	8	-	-	-	-	-	-	-	-	100
EEL301	Electrical and Electronics Measurement Lab	-	-	-	-	25	10	-	-	25	10	-	-	50
EEL302	Object Oriented Programming and Methodology Lab	-	-	-	-	25	10	-	-	-	-	50	20	75
EEL303	Electronics Lab - I	-	-	-	-	25	10	-	_	_	-	25	10	50
EEL304	Electrical Machine Lab - I	-	-	-	-	25	10	-	-	-	-	25	10	50
Total		400	-	100	-	150	-	-	-	25	-	100	-	775

Program Structure for SE Electrical Engineering University of Mumbai (With Effect from 2017-18)

Scheme for Semester IV

Course		T ('	eaching Schen Contact Hours	ne s)	Credits Assigned				
Code	Course Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EEC401	Applied Mathematics - IV	4	-	1	4	-	1	5	
EEC402	Power System - I	3	-	1	3	-	1	4	
EEC403	Electrical Machines – II	4	-	-	4	-	-	4	
EEC404	Electromagnetic Field and wave Theory	3	-	1	3	-	1	4	
EEC405	Analog and Digital Integrated Circuits	3	-	-	3	-	-	3	
EEC406	Electrical Network	3	-	1	3	-	1	4	
EEL401	Simulation Lab - I	-	2	-	-	1	-	1	
EEL402	Electrical Machines Lab - II	-	2	-	-	1	-	1	
EEL403	Electronics Lab - II	-	2	-	-	1	-	1	
EEL404	Electrical Workshop	-	2	-	-	1	-	1	
	Total	20	8	4	20	4	4	28	

Examination Scheme for Semester IV

						Ex	kaminati	ion Sche	eme					
			The	eory										
Course	Course Name	External (UA)		Inte (C	Internal (CA)		Term Work		Practical		ral	Pract./Oral		Total
Code		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC401	Applied Mathematics - IV	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC402	Power System - I	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC403	Electrical Machines - II	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC404	Electromagnetic Field and wave Theory	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC405	Analog and Digital Integrated Circuits	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC406	Electrical Network	80	32	20	8	25	10	-	-	-	-	-	-	125
EEL401	Simulation Lab - I	-	-	-	-	25	10	-	-	25	10	-	-	50
EEL402	Electrical Machines Lab - II	-	-	-	-	25	10	-	-	-	-	25	10	50
EEL403	Electronics Lab - II	-	-	-	-	25	10	-	-	-	-	25	10	50
EEL404	Electrical Workshop	-	-	-	-	25	10	-	-	25	10	-	-	50
Total		480	-	120	-	200	-	-	-	50	-	50	-	900

University of Mumbai								
Course	Course Name	Teachin (Contac	g Scheme t Hours)	Credits Assigned				
Code		Theory	Tutorial	Theory	Tutorial	Total		
EEC301	Applied Mathematics-III (abbreviated as AM-III)	4	1	4	1	5		

	Course Name	Examination Scheme								
Course										
code		Interna	al Assess	sment	End	Exam	Term	Total		
couc		Toot 1	Tost 2	Ava	Sem.	Duration	Work	TOtal		
		Test I	Iest Z	Avg.	Exam	(Hrs.)				
EEC301	Applied Mathematics-III	20	20	20	80	3	25	125		

Course Objectives	 To Develop knowledge and skill based foundation in Mathematics amongst students needed for the field of Electrical Engineering To provide students with mathematics fundamentals necessary to formulate, solve and analyses complex engineering problems. To prepare student to apply reasoning informed by the contextual knowledge to Electrical Engineering practice. To prepare students to work as part of teams on multi-disciplinary projects.
Course Outcomes	 Students will be able To demonstrate basic knowledge of Laplace Transform, Fourier series, Bessel Functions, Vector Algebra and Complex Variable. To identify and Model the problems of the field of Electrical Engineering and solve it.

Module	Contents	Hours								
1	Laplace Transform	07								
	Laplace Transform (LT) of Standard Functions: Definition of									
	Laplace transform, Condition of Existence of Laplace transform,									
	Laplace transform of e^{at} , $Sin(at)$, $cos(at)$, $sinh(at)$, $cosh(at)$, t^n									
	Heaviside unit step function, Dirac-delta function, Laplace transform									
	of Periodic function									
	Properties of Laplace Transform: Linearity, first shifting theorem,									
	second shifting theorem, multiplication by t^n , Division by t, Laplace									
	Transform of derivatives and integrals, change of scale, convolution									
	theorem, Evaluation of integrals using Laplace transform.									
2	Inverse Laplace Transform & its Applications:	06								
	Partial fraction method, Method of convolution, Laplace inverse by									
	derivative.									
	Applications of Laplace Transform: Solution of ordinary									
	differential equations, Solving RLC circuit differential equation of									

	first order and second order with boundary condition using Laplace	
	transform (framing of differential equation is not included).	
3	Fourier Series:	11
	Introduction: Orthogonal and orthonormal set of functions,	
	Introduction of Dirichlet's conditions, Euler's formulae.	
	Fourier Series of Functions: Exponential, trigonometric functions of	
	any period =2L, even and odd functions, half range sine and cosine	
	series	
	Complex form of Fourier series, Fourier integral representation,	
	Fourier Transform and Inverse Fourier transform of constant and	
	exponential function.	
4	Vector Algebra & Vector Differentiation:	07
	Review of Scalar and Vector Product: Scalar and vector product of	
	three and four vectors, Vector differentiation, Gradient of scalar point	
	function. Divergence and Curl of vector point function.	
	Properties: Solenoidal and irrotational vector fields, conservative	
	vector field.	
5	Vector Integral	06
	Line integral, Green's theorem in a plane, Gauss' divergence theorem	
	and Stokes' theorem	
6	Complex Variable & Bessel Functions:	11
	Analytic Function: Necessary and sufficient conditions (No Proof),	
	Cauchy Reiman equation Cartesian form (No Proof) Cauchy Reiman	
	Equation in polar form (with Proof), Milne Thomson Method and it	
	application, Harmonic function, orthogonal trajectories.	
	Mapping: Conformal mapping, Bilinear transformations, cross ratio,	
	fixed points	
	Bessel Functions: Bessel's differential equation, Properties of Bessel	
	function of order $+1/2$ and	
	-1/2, Generating function, expression of	
	$\cos(x\sin\theta)$, $\sin(x\sin\theta)$ in term of Bessel functions	

Books Recommended:

Text books:

- 1. H.K. Das, "Advanced engineering mathematics", S . chand , 2008
- 2. A. Datta, "Mathematical Methods in Science and Engineering", 2012
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication

Reference Books:

- 1. B. V. Ramana, "Higher Engineering Mathematics", Tata Mc-Graw Hill Publication
- 2. Wylie and Barret, "Advanced Engineering Mathematics", Tata Mc-Graw Hill 6th Edition
- 3. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, Inc
- 4. Murry R. Spieget, "Vector Analysis", Schaum's outline series, Mc-Graw Hill

Publication

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2).

The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
Code		Theory	Tutorial	Theory	Tutorial	Total			
EEC302	Electronic Devices and Circuits (abbreviated as EDC)	4	-	4	-	4			

Course Code	Course Name		Examination Scheme						
		T	1.4	5					
	Electronic	Interr	nal Asses	sment	End	Exam.	Term	Total	
EEC302	Devices and	Test 1	Test 2	Δνα	Sem.	Duration	Work	Total	
	Circuits	1050 1	Test 2	Avg.	Exam	(Hrs.)			
		20	20	20	80	3	-	100	

	• To teach the basic concept of various electronic devices, circuits and
Course	their application
Objectives	• To develop ability among students for problem formulation, system
	design and solving skills
	Students will be able
	• To Identify the different types of diodes and their applications in
	electronic circuits
	• To analyze the dc and ac parameters of BJT JFET, and differential
Course	amplifiers
Outcomes	• To demonstrate and analyze the effects of various parameters on
o ute onnes	performance of BJT and JFET amplifier.
	• To analyze the effects of negative feedback in BJT and JFET amplifiers.
	• To identify the effects of cascading in BJT and JFET amplifiers.
	• To analyze the different types of oscillators.

Module	Contents	Hours
1	Diode:	08
	Basic construction, Operation and characteristics of diode,	
	Application of diode as clipper and clampers, Construction,	
	Principle of operation and application of special diode -1) Zener,	
	2) LED, 3) Schottky, 4) Photodoide. Full Wave Bridge Rectifier	
	with and without Filter, Analysis: specification of the devices and	
	components required for C, LC, CLC filter.	
2	Bipolar Junction Transistor:	14
	Construction and Characteristics of various configurations of	

	BJT. Biasing Circuits: Types, dc circuit analysis, load line,	
	thermal runaway, stability factor analysis, thermal stabilization	
	and Compensation.	
	Modeling: Small signal analysis of CE configurations with	
	different biasing network using h-parameter model. Introduction	
	to re-model and hybrid-pi model.	
	Amplification derivation of expression for voltage gain, current	
	gain, input impedance and output impedance of CC, CE	
	amplifiers, Study of frequency response of BJT amplifier.	
3	Field Effect Transistor:	08
	Types, construction and their characteristics, Biasing circuits for	
	FET amplifiers, FET small signal analysis, derivation of	
	expressions for voltage gain and output impedance of CS	
	amplifiers.	
	MOSFET- Types, construction and their characteristics	
4	Feedback Amplifier:	07
	Introduction to positive and negative feedback, negative feedback	
	-current, voltage, Series and Shunt type. It's effect on input	
	impedance, output impedance, voltage gain, current gain and	
	bandwidth	
5	Cascade amplifiers:	03
	Types of coupling, effect of coupling on performance of BJT and	
	JFET amplifiers, Darlington-pair	
6	Oscillators:	08
	Positive feedback oscillators, frequency of oscillation and	
	condition for sustained oscillations of a) RC phase shift, b)Wien	
	bridge, c)Hartley/ Colpitts with derivations, crystal Oscillator,	
	UJT relaxation oscillator	

Books Recommended:

Text Books:

1. Robert Boylestad and Louis Nashelsky, *Electronic Devices and Circuits*, Prentice-Hall of India.

2. Millman and Halkias, 'Electronic Devices and Circuits', Tata McGraw-Hill.

3. David Bell, Electronic Devices and Circuits, Oxford University Press

Reference Books:

1. Thomas Floyd, '*Electronic Devices*', Prentice-Hall of India

2. Ramakant A. Gayakwad, Op-Amps and Linear Integrated Circuits

3. Neamen D.A., *Electronic Circuit Analysis and Design*, McGraw Hill

International.

4. S. Salivahanan, N. Suresh Kumar, "Electronic Devices and Circuits" TMH

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
EEC303	Conventional and Non- Conventional Power Generation (abbreviated as CNCPG)	3	1	3	1	4			

Course Code		Examination Scheme								
	Course Name									
		Internal Assessment			End	Exam	Term	Total		
		Test 1	Test 2	Avg.	Sem.	Duration	work	Total		
					Exam	(Hrs.)				
	Conventional and									
EEC303	Non-conventional	20	20	20	80	03	25	125		
	Power Generation									

Course	• To impart the knowledge of basics of different types of power generation &
Objectives	power plants in detail so that it helps them in industry oriented learning
	Students will be able
	• To analyse the economics of power generation
	• To illustrate, the operation of thermal power plant
Course	• To describe, the classification of hydro power plant and significance of
outcomes	hydrograph
	• To illustrate, the operation of nuclear power plant
	• To compare the operation of Diesel and Gas Turbine power plant.
	• To illustrate operation of various Non-Conventional Energy sources

Module	Contents	Hours
1	Conventional and Non- Conventional sources of energy	05
	Present energy scenario worldwide and Indian perspective.	
	Economics of the power plant	
	Load curve, load duration curve, various factors and effects of fluctuating	
	load on operation and methods of meeting fluctuating load. Selection of	
	generating equipment, depreciation of plant, cost of electrical energy-	
	Fixed and operating cost of different plants, effect of load factor on unit	
	cost. Role of load diversity in power system economy and basic tariff	
	methods (*Numerical).	

2	Thermal power plant	09
	Law of Thermodynamics. Analysis of steam cycle-Carnot, Rankine. PV	
	and TS diagram, Reheat cycle and Regenerative cycle. Layout of power	
	plant. Selection of site, Lay out of Coal handling Plant, pulverized coal	
	handling, Fluidized bed combustion, Ash handling, Dust collection,	
	Forced draught and induced draught fans, Water tube Boiler and Fire tube	
	boiler. Impulse turbine and reaction turbine. Accessories: Feed pump,	
	injector, economizer, air preheater, super heater, steam separator, Direct	
	contact condensers and Surface condenser, and cooling towers.	
3	Hydro power plant	05
	Rainfall, run off and its measurement hydrograph, flow duration curve,	
	mass curve, reservoir storage capacity, layout of hydroelectric power	
	plant, Selection of site, classification of hydro power plant, construction	
	and working of turbine-Pelton, Kaplan, Francis. (*Numerical)	
4	Nuclear power plant	06
	Introduction of nuclear engineering, fission, fusion, nuclear materials,	
	thermal fission reactor, layout of nuclear power plant, Selection of site,	
	PWR, BWR, reactor control, introduction to liquid metal, fast breeder	
	reactors and plasma technology.	
5	Gas turbine and Diesel power plant	04
	Brayton cycle operation, Layout of gas turbine power plant, types of gas	
	turbine power plant. Diesel cycle, Principle of Diesel power plant, layout,	
	significance of components of diesel power plant. Comparison with gas	
	turbine power plants in terms of advantages and disadvantages	
6	Power Generation using non-conventional energy sources	07
	Solar Energy	
	Solar Flat plate collectors, Solar concentrators, Dish and Parabolic trough	
	concentrating generating systems, Central tower solar thermal power	
	plants.	
	Basic principle of power generation in a PV cell, Band gap and efficiency	
	of PV cells solar cell characteristics.	
	Wind Energy	
	Basic component of WEC, Types of wind turbine-HAWT, VAWT,	
	Performance parameters of wind turbine, Power in wind, Wind electric	
	generators and site selection.	
	Fuel Cell	
	Introduction to fuel cell, principle of operation of fuel cell, Types of fuel	
	cell	
	Other sources	
	Basics of power generation: Biomass, geothermal and tidal energy sources	
	and OTEC.	

Note: *Numerical should be covered in tutorials.

Books Recommended:

Text Books:

1. MV Deshpande, Elements of Power station design, Tata McGraw Hill

- 2. DH Bacon, Engineering Thermodynamics, London Butterworth
- 3. PK Nag, Power Plant Engineering-Steam & Nuclear, Tata McGraw Hill

Reference Books:

1. Fredrick T Morse, Power Plant Engineering, East-West Press Pvt Ltd

2. Mahesh Verma, Power Plant Engineering, Metrolitan Book Co Pvt Ltd

3. RK Rajput, A Text Book of Power System engineering, Laxmi Publication

4. George W Sutton-(Editor), *Direct Energy Conversion*, Lathur University, Electronic Series Vol 3, McGraw Hill

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Term work:

Term work shall consist of minimum two group assignments followed by seminar, report on power plant visit and four tutorials based on the syllabus. The distribution of marks for term work shall be as follows:

Tutorial and Visit	:10 marks
Assignments and Seminar	:10 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course code	Course Name	Teaching scheme (Contact Hours)		Cı	redits Assig	ned		
		Theory	Tutorial	Theory	Tutorial	Total		
	Electrical and							
EEC304	Electronics	4	-	4	-	4		
	Measurement							
	(abbreviated as EEM)							

Course Code		Examination Scheme								
	Course Name									
		Internal Assessment			End	Exam	Term	Total		
		Test 1	Test 2	Avg.	Sem.	Duration	work	10141		
					Exam	(Hrs.)				
	Electrical and									
EEC304	Electronics	20	20	20	80	03	-	100		
	Measurement									

Course Objectives	 Students should be able to understand working principles of various analog and digital instruments & devices used for measurement of the various electrical parameters. To understand the measurement of physical parameters using sensors.
Course Outcomes	 Students will be able To illustrate the working principle of measurement instruments. To analyse the working of various analog and digital instruments in electrical measurements. To analyse the concept of extension of range of meters used in electrical measurements. To analyse the performance of bridges used in electrical measurement process. To illustrate the need for calibration process in instruments. To analyse the performance of transducers involved in electrical measurement.

Module	Content	Hours
1	Principles of Analog Instruments:	16
	Errors in Measurement, Difference between Indicating and Integrating	
	Instruments. Moving coil and Moving iron Instruments, Ammeters	
	Shunts & Voltmeter Multiplier. Extension of ranges by using shunt,	
	Multipliers, Dynamometer type Wattmeter & Power Factor meters.	
	Reed Moving Coil type Frequency Meters. Weston type Synchroscope.	
	DC Permanent magnet moving coil type Galvanometers. Ballistic	

	Galvanometer and AC Vibration Galvanometer (only the basic	
	working Principle and Applications).	
2	Principles of Digital Instruments: Advantages of digital meters over analogue meters. Resolution & sensitivity of digital meters. Working principles of digital Voltmeter, Ammeter, Frequency meter, Phase Meter, Energy meter, Tachometer	10
	and Multi-meter.	
3	Measurement of Resistance: Wheatstone's Bridge, Kelvin's Double Bridge and Megger.	05
4	Measurement of Inductance & Capacitance: Maxwell's Inductance bridge, Maxwell's Inductance & Capacitance Bridge, Hay's bridge, Anderson's Bridge, Desaugthy's Bridge, Schering Bridge and Q meter	05
5	Potentiometer: Basic potentiometer circuit, standardization, Crompton's Type Potentiometer and its applications for calibration of Ammeter, Voltmeter and Wattmeter and measurement of resistance and power.	04
6	Transducers: Electrical Transducers, Active & Passive Transducers, Resistive Transducer-Potentiometer, Resistance Pressure Transducer, Resistive Position Transducer, Temperature Transducer- Resistance Thermometer, Thermistor, Thermo couple, RTD, Inductive Transducer-Using Self Inductance, Variable Reluctance type, Differential Output Transducers, LVDT, RVDT, Capacitive Transducer-Capacitive Pressure Transducer Piezo Electric Transducer, Photo Electric Transducer (Photo emissive, Photo Conductive, Photo Voltaic)	08

Books Recommended:

Text Books:

1. Electrical & Electronic Measurements and Instrumentation by AK Sawhney, Dhanpat Rai & Sons

2. Modern Electronic Instrumentation and Measurement Techniques by Helfric and Cooper, Prentice Hall of India

3. Electronic Instrumentation By H.S.Kalsi, Third Edition, Tata McGraw Hill

Reference Books:

1. Principle of Measurement & Instrumentation by Alan.S.Moris, Prentice Hall of India

2. Electrical Measurement & Instrumentation by RS Sirohi & Radhakrisnan, New Age International

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course code	Course Name	Teachin (Contac	g scheme ct Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEC305	Electrical Machine-I (abbreviated as EMC-I)	4	-	4	-	4		

		Examination Scheme							
Course	Course								
Course	Name	Internal Assessment			End	Exam	Term	Total	
code		Test 1 Test 2	Test 2	2 Avg.	Sem.	Duration	Work	Total	
			1050 2		Exam	(Hrs.)			
EEC305	Electrical Machines-I	20	20	20	80	3	-	100	

Course Objectives	 Students should understand the concepts of DC machines, Reluctance motor, Stepper motors and their applications. To impart industry oriented learning.
Course Outcomes	 Students will be able To analyze series parallel magnetic circuits to determine circuit parameters and losses. To illustrate principle of energy conversion in single and double excited machines. To understand the performance parameters of dc machines. To analyze the effect of performance parameters and application of dc motors. To analyze the performance of dc machines by conducting various test. To illustrate the principle of operation and applications of stepper motors.

Module	Contents	Hours
1	Basics of Magnetism	04
	Magnetic field, Magnetic circuit, Numerical from series parallel	
	magnetic circuit, Flux linkage, Inductance and energy, Faraday's laws,	
	Hysteresis and eddy current losses.	
2	Electromechanical Energy Conversion	08
	Principle, Energy stored in magnetic field, Torque in singly excited	
	magnetic field, Reluctance motor, Doubly excited magnetic field,	
	Torque from energy and Co- energy. Dynamic equations	
3	DC Machines	10
	Construction of machine, Basic design concept of lap and wave	
	winding, Principle of operation, Significance of commutator and	

	brushes, EMF and torque equation, concept of back EMF, Armature	
	reaction, Methods to minimize the effect of Armature reaction,	
	Process of commutation, Methods to improve commutation.	
4	DC Motor	14
	Characteristics of DC Motors, speed-torque characteristic equations	
	(Drives approach), Electrical braking (Rheostatic, regenerative and	
	plugging with numerical and speed-torque characteristic equation),	
	Necessity of starter, concept of soft starting, Block diagram of soft	
	starter, Speed control of DC shunt and series motor, losses and	
	efficiency, Applications of DC motor.	
5	Testing of DC Motor	06
	Retardation, Brake load, Swinburne, Hopkinson's and field test.	
6	Stepper Motor	06
	Working principle, construction of stepper motor, Classification,	
	Variable reluctance stepper motor (VRSM), Permanent magnet stepper	
	motor, Characteristics of stepper motor (Static and dynamic	
	characteristic) Applications of stepper motor. (No Numerical)	

Books Recommended:

Text Books:

- 1. Bimbhra P. S., Electric Machinery, Khanna Publisher,
- 2. Bimbhra P. S., Generalized Machine Theory, Khanna Publisher,
- 3. E. G. Janardanan, Special Electrical Machines, PHI
- 4. S. K. Pillai, A first course on Electrical Drives, New age publication
- 5. V. K. Mehta, Principles of Electrical Machines, S Chand Publication
- 6. G. K. Dubey, Fundamentals of Electrical Drives, Narosa Publication

Reference Books:

- 1. M. G. Say and E. O. Taylor, Direct current machines, Pitman publication
- 2. Ashfaq Husain, *Electric Machines*, Dhanpat Rai and co. publications
- 3. M. V. Deshpande, *Electric Machines*, PHI
- 4. Vedam Subramanyam, Electrical Drive-concept and applications, TMH Publication
- 5. A. E. Fitzgerald, Kingsly, Stephen., Electric Machinery, Tata McGraw Hill
- 6. K. Venkatratnam, Special Electrical Machines,

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
		Theory	Practical	Theory	Practical	Total			
EEL301	Electrical and Electronics Measurement Lab (abbreviated EEM Lab)	-	2	-	1	1			

Course Code									
			Theory				Practical		
	Course Name	Internal Assessment			End	Tarra Prac			Total
		Tost 1	Toot 2	Avg	Sem.	Work	and	Oral	
		Test I	Test 2		Exam		Oral		
EEL301	Electrical								
	Network and		-	-	-	25	- 25	25	50
	Measurement	-						50	
	Lab								

Course Objectives	• Students should be able to understand working principles of various analog and digital instruments & devices used for measurement of the various electrical parameters.							
	• To understand the measurement of physical parameters using sensors.							
	 To illustrate the working principle of bridges 							
	• To do measurement of various electrical circuit parameters.							
Course	• To calibrate various electrical measuring instruments.							
Outcomes	• To illustrate the concept of extension of range of meters used in electrica							
	measurements.							
	• To do the measurement of various process parameters.							
	To illustrate the working principle of sensors							

Syllabus: Same as that of Course EEC304 Electrical and Electronics Measurement

Suggested List of Laboratory Experiments:

- 1. Measurement of the medium resistance using Wheatstone Bridge.
- 2. Measurement of the low resistance using Kelvin's Double Bridge.
- 3. Measurement of inductance using Maxwell's Bridge.
- 4. Measurement of inductance using Hay's Bridge.
- 5. Measurement of inductance using Anderson's Bridge.
- 6. Measurement of capacitance using Desauty's bridge.

- 7. Measurement of capacitance using Schering's bridge.
- 8. Calibration of Crompton DC Potentiometer.
- 9. Calibration of Ammeter/Voltmeter/Wattmeter using Potentiometer.
- 10. To measure output voltage and displacement using LVDT and draw graph to verify the characteristics of output voltage Vs Displacement.
- 11. Measurement of temperature using RTD.
- 12. To Study various Thermocouples and Estimate their Response times.
- 13. Calibration of single phase energy meter by direct loading.
- 14. To measure output voltage and force using strain gauge and draw graph to verify the characteristics of force Vs Output voltage.

Any other experiment based on syllabus which will help students to understand topic/concept.

Term Work:

Term work shall consist of minimum 8 experiments. The distribution of marks for term work shall be as follows:

Experiments Performance	:10 Marks
Journal	:10 Marks
Attendance (Theory and Practical)	:05 Marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned					
		Theory	Practical	Theory	Practical	Total			
EEL302	Object Oriented Programming and Methodology Lab (abbreviated OOPM Lab)	-	4#	-	2	2			

Course		Examination Scheme							
			Theo	ory		Practical			
Code	Course Name	Interna	al Assess	ment	End	Torm	Pract.		Total
Coue		Test 1	Test 2	Avg	Sem. Vork	and	Oral		
		1050 1	1050 2	1115	Exam	WOIK	Oral		
	Object								
	Oriented								
EEI 302	Programming					25	50		75
EEL302	and	-	-	-	-	23	50	-	15
	Methodology								
	Lab								

Course	 To learn the object oriented programming concepts To study various java programming constructs like multithreading, exception handling, packages etc. 					
Objectives	 To explain components of GUI based programming. 					
	Students will be able					
	• To apply fundamental programming constructs.					
Course	• To illustrate the concept of packages, classes and objects.					
Outcomes	• To elaborate the concept of strings, arrays and vectors.					
Outcomes	• To implement the concept of inheritance and interfaces.					
	• To implement the notion of exception handling and multithreading.					
	To develop GUI based application.					

• **Prerequisite:** Structured Programming Approach

Module	Content	Hours				
1	OO Concepts: Object, Class, Encapsulation, Abstraction,	02				
	Inheritance, Polymorphism.					
	Features of Java, JVM					
	Basic Constructs/Notions: Constants, variables and data types,					
	Operators and Expressions, Revision of Branching looping					
2	Classes, Object and Packages	05				
	Class, Object, Method.					

	Constructor, Static members and methods	
	Passing and returning Objects	
	Method Overloading	
	Packages in java, creating user defined packages, access specifiers.	
3	Array, String and Vector	04
	Arrays, Strings, String Buffer	
	Wrapper classes, Vector	
4	Inheritance and Interface	03
	Types of Inheritance, super keyword, Method Overriding,	
	abstract class and abstract method, final keyword,	
	Implementing interfaces, extending interfaces	
5	Exception Handling and Multithreading	04
	Error vs Exception, try, catch, finally, throw, throws, creating	
	own exception	
	Thread lifecycle, Thread class methods, creating threads,	
	Synchronization	
6	GUI programming in JAVA	06
	Applet: Applet life cycle, Creating applets, Graphics class methods,	
	Font and Color class, parameter passing.	
	Event Handling: Event classes and event listener	
	Introduction to AWT: Working with windows, Using AWT	
	controls- push Buttons, Label, Text Fields, Text Area, Check	
	Box, and Radio Buttons.	

Suggested List of Programming Assignments / Laboratory Work:

- 1. Program on various ways to accept data through keyboard and unsigned right shift operator.
- 2. Program on branching, looping, labelled break and labelled continue.
- 3. Program to create class with members and methods, accept and display details for single object.
- 4. Program on constructor and constructor overloading
- 5. Program on method overloading
- 6. Program on passing object as argument and returning object
- 7. Program on creating user defined package
- 8. Program on 1D array
- 9. Program on 2D array
- 10. Program on String
- 11. Program on StringBuffer
- 12. Program on Vector
- 13. Program on single and multilevel inheritance (Use super keyword)
- 14. Program on abstract class
- 15. Program on interface demonstrating concept of multiple inheritance
- 16. Program on dynamic method dispatch using base class and interface reference.
- 17. Program to demonstrate try, catch, throw, throws and finally.
- 18. Program to demonstrate user defined exception

- 19. Program on multithreading
- 20. Program on concept of synchronization
- 21. Program on Applet to demonstrate Graphics, Font and Color class.
- 22. Program on passing parameters to applets
- 23. Program to create GUI application without event handling using AWT controls
- 24. Program to create GUI application with event handling using AWT controls
- 25. Mini Project based on content of the syllabus. (Group of 2-3 students)

Any other experiment based on syllabus which will help students to understand topic/concept.

Term Work:

Term work shall consist of minimum 16 experiments, assignments (min 2) and class test. The distribution of marks for term work shall be as follows:

Experiments Performance	:10 marks
Assignments	:05 marks
Class Test	:05 marks
Attendance	:05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai							
Course	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned			
Code		Theory	Practical	Theory	Practical	Total	
EEL303	Electronics Lab-I (abbreviated EL Lab-I)	-	2	-	1	1	

Course Code		Examination Scheme							
	Course Name	Theory				I			
		Internal Assessment			End	Torm	Pract.	Oral	Total
		Test 1	Test 2	Avg	Sem. Exam	Work	and Oral		
EEL303	Electronics Lab-I	-	-	-	-	25	25	-	50

Course Objectives	 To understand the basic concept of various electronic devices, circuits and their application. To develop ability among students to design and implement electronic circuits.
Course Outcomes	 Student will be able To identify the different types of semiconductor devices and demonstrate their applications in electronic circuits. To determine the dc and ac parameters of semiconductor devices and differential amplifiers. To analyze the performance of different types of rectifier with and without filter. To plot frequency response of BJT and JFET amplifier. To analyze effect of feedback on the performance of amplifier. To analyze the performance of different type of oscillators

Syllabus: Same as that of Course EEC302 Electronic Devices and Circuits

Suggested List of Laboratory Experiments:

- 1. Study of V-I characteristics of standard PN junction diode, zener diode, schottkey diode.
- 2. Use of diode as clipper and clamper
- 3. Rectifier- Filter performance analysis
- 4. BJT biasing network stability analysis
- 5. BJT Input and Output Characteristics for CE/CB/CC configuration
- 6. Frequency response of BJT CE amplifier
- 7. Study of JFET characteristics and calculation of parameters
- 8. Study of MOSFET characteristics and calculation of parameters

- 9. Frequency response of JFET CS amplifier
- 10. Study of negative feedback on amplifier performance
- 11. Study of photo devices applications
- 12. Study of differential BJT amplifier
- 13. Study of Darlington pair amplifier
- 14. Study of a RC phase shift oscillator
- 15. Study of a Wien Bridge oscillator
- 16. Study of a Hartley/Colpitts oscillator

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum 10 experiments. The distribution of marks for term work shall be as follows:

Experiments performance	:10 marks
Journal	:10 marks
Attendance	:05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai							
Course	Course Name	Teachir (Conta	ng Scheme ct Hours)	Credits Assigned			
Code		Theory	Practical	Theory	Practical	Total	
EEL304	Electrical Machine Lab-I (abbreviated EMC Lab-I)	-	2	-	1	1	

		Examination Scheme							
Course	Course Name	Theory]			
Code		Internal Assessment E			End	Torm	Pract.		Total
		Test 1 T	Test 2	Avg	Sem.	Work	and	Oral	
			Test 2		Exam	WOIK	Oral		
EEL304	Electrical Machine Lab-I	-	-	-	-	25	25	-	50

Course Objectives	 Students should understand the concepts of DC machines, Reluctance motor, Stepper motors and their applications. To impart industry oriented learning.
Course	Students will be able
Outcomes	• To demonstrate different speed control methods of dc motors.
	• To illustrate and analyze the performance of dc motors.

Syllabus: Same as EEC-305 (Electrical Machines-I)

Suggested List of Laboratory Experiment:

- 1. Speed control of DC shunt motor.
- 2. Load test on DC shunt motor.
- 3. Load test on DC series motor.
- 4. Load test on DC compound motor.
- 5. Brake test on DC motor.
- 6. Open circuit and load characteristic of DC shunt generator.
- 7. Rheostatic braking of DC motor.
- 8. Plugging of DC motor.
- 9. Retardation test of DC motor.
- 10. Swinburne's test on DC motor.
- 11. Hopkinson's test on DC motor.
- 12. Study of Stepper motor drive.
- 13. Field test

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum 8 experiments. The distribution of marks for term work shall be as follows:

Experiments performance	:10 marks
Journal	:10 marks
Attendance	:05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai							
Course Code	Course Name	Teaching Scheme (Contact Hours)		Credits Assigned			
		Theory	Tutorial	Theory	Tutorial	Total	
EEC401	Applied Mathematics-IV (abbreviated as AM-IV)	4	1	4	1	5	

	Course Name	Examination Scheme						
Course		Theory						
code		Internal		End	Exam	Term	Total	
		Assessment			Sem.	Duration	Work	Total
		Test 1	Test 2	Avg	Exam	(Hrs)		
EEC401	Applied Mathematics-IV	20	20	20	80	3	25	125

Course Objectives	 To develop analytical insight of the student to prepare them for graduates studies in Electrical Engineering. To enhance their ability to solve and analyze Electrical Engineering problem. To provide students with a strong mathematical foundation to acquire the professional competence knowledge and skills.
Course Outcomes	 Students will be able To develop the proactive approach towards the selection of methods to a solution of engineering problems. To identify different probability distribution, learn sampling technique, compute Eigen values and Eigen vectors and evaluate complex integrals and use their application in Electrical Engineering problems.

Pre-requisites:

Basics of Complex numbers, Analytic Function, Matrices, Symmetric, Orthogonal and Unitary matrices, Rank, Normal form, Solution of system of linear equations, L. I. & L. D. vectors, Basics of Probability.

1		Calculus of Variation:	06
	1.1	Euler's Langrange equation, solution of Euler's Langrange equation	
		(only results for different cases for Function) independent of a	
		variable, independent of another variable, independent of	
		differentiation of a variable and independent of both variables	
	1.2	Isoperimetric problems, several dependent variables	
	1.3	Functions involving higher order derivatives: Rayleigh-Ritz method	
		Linear Algebra: Vector Spaces	06
2	2.1	Vectors in n-dimensional vector space: properties, dot product, cross product, norm and distance properties in n-dimensional vector space.	
	2.2	Vector spaces over real field, properties of vector spaces over real	
		field, subspaces.	

	2.3	The Cauchy-Schwarz inequality, Orthogonal Subspaces, Gram-	
2		Schmidt process.	10
3	2.1	Linear Algebra: Matrix Theory	10
	3.1	Characteristic equation, Eigen values and Eigen vectors, properties of Eigen values and Eigen vectors	
	3.2	Cayley-Hamilton theorem (without proof), examples based on verification of Cayley- Hamilton theorem.	
	3.3	Similarity of matrices, Diagonalisation of matrices.	
	3.4	Functions of square matrix, derogatory and non-derogatory matrices.	
4		Probability	10
	4.1	Baye's Theorem (without proof)	
	4.2	Random variable: Probability distribution for discrete and	
		continuous random variables, Density function and distribution	
		function, expectation, variance.	
	4.3	Moments, Moment Generating Function.	
	4.4	Probability distribution: Binomial distribution, Poisson & normal	
		distribution (For detailed study)	
5		Correlation	04
	5.1	Karl Pearson's coefficient of correlation, Covariance, Spearman's	
		Rank correlation,	-
	5.2	Lines of Regression.	
6		Complex integration	12
	6.1	Complex Integration: Line Integral, Cauchy's Integral theorem for	
		simply connected regions, Cauchy's Integral formula.	
	6.2	Taylor's and Laurent's Series	
	6.3	Zeros, singularities, poles of $f(z)$, residues, Cauchy's Residue	
		theorem.	-
	6.4	Applications of Residue theorem to evaluate real Integrals of	
		different types.	

Reference Books:

Text books:

- 1. H.K. Das, "Advanced engineering mathematics", S. Chand, 2008
- 2. A. Datta, "Mathematical Methods in Science and Engineering", 2012
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication

4. P.N.Wartilar & J.N.Wartikar, "*A Text Book of Applied Mathematics*" Vol. I & II, Vidyarthi Griha Prakashan., Pune.

Reference Books:

- 1. B. V. Ramana, "Higher Engineering Mathematics", Tata Mc-Graw Hill Publication
- 2. Wylie and Barret, "Advanced Engineering Mathematics", Tata Mc-Graw Hill 6th Edition
- 3. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, Inc
- 4. Seymour Lipschutz "Beginning Linear Algebra" Schaum's outline series, Mc-Graw Hill Publication

5.Seymour Lipschutz "Probability" Schaum's outline series, Mc-Graw Hill Publication

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2).

:05 marks

The distribution of marks for term work shall be as follows:

Tutorials	:15 marks
-----------	-----------

Assignments

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
		Theory	Tutorial	Theory	Tutorial	Total	
EEC402	Power System-I (abbreviated as PS-I)	3	1	3	1	4	

Course code		Examination Scheme							
	Course Name								
		Internal Assessment			End	Exam	Term	Total	
		Test 1 Tes	Test)	Test 2 Ave		Sem.	Duration	Work	Total
			Test 2	Avg	Exam	(Hrs)			
EEC402	Power System-I	20	20	20	80	3	25	125	

r	
Course Objectives	• To learn Basic structure of electrical power systems, different component of power system network.
	• To get knowledge of mechanical and electrical design of transmission
U U	systems.
	• To learn representation of transmission systems for performance evaluation.
	Students will be able
	• To illustrate the general structure of power system.
	• To illustrate purpose of different mechanical components of overhead
	transmission lines.
	• To determine transmission line parameters for different configurations.
Course	• To analyze the performance of short, medium and Long transmission
Outcomes	lines.
	• To analyze the performance of transmission line for different loading
	conditions.
	• To illustrate safety norms and regulations related to underground cables
	and grounding techniques.
1	

Module	Contents	Hours
1	Introduction:	02
	Basic structure of power system: generation, transmission and	
	distribution, single line diagram of typical AC supply system,	
	comparison between AC and DC supply system, various system of	
	electric power transmission, choice of economic voltage for	
	transmission, Transmission and Distribution network in India.	
2	Mechanical Design of Overhead lines:	07
	Main component of overhead lines, line supports, span, conductor	
	configuration, sag in overhead lines, calculation of sag for equal and	
	unequal supports, effect of ice and wind loading, insulators, type of	
	insulators, potential distribution across insulator string, string	

	efficiency, methods for improving string efficiency (*Numerical)	
3	Transmission Line Parameters:	12
	Resistance of transmission line, skin effect, proximity effect	
	Definition of inductance, Internal and external flux linkage of single	
	conductor, inductance of single phase two wire line, composite and	
	bundled conductor, inductance of three phase line with symmetrical	
	and unsymmetrical spacing, concept of GMR and GMD, necessity of	
	transposition, inductance of three phase double circuit line with	
	symmetrical and unsymmetrical spacing, inductance of bundle	
	conductor	
	Capacitance of transmission line, capacitance of single phase line,	
	capacitance of three phase line with symmetrical and unsymmetrical	
	spacing, effect of earth on transmission line capacitance	
	(*Numerical)	
4	Representation of power system components:	03
	Introduction, single phase solution of balanced three phase networks,	
	One-Line diagram and Impedance or reactance diagram, Per	
	Unit(P.U.)system, advantage of Per Unit system ,p.u. impedance	
	diagram, representation of load (*Numerical)	
5	Performance of Transmission Line:	07
	Classification and modelling of short, medium and long lines,	
	regulation and efficiency of short and medium lines, Ferranti effect,	
	evaluation and estimation of generalized circuit constant(ABCD) for	
	short and medium lines, surge impedance loading, tuned power line,	
	Power circle diagram (*Numerical)	
6	Underground Cable and Power System Earthing:	05
	Underground Cable:	
	Classification and construction of cable ,insulation resistance of	
	cable, capacitance of single core and three core cable, grading of	
	cable, intersheath grading, capacitance grading	
	Power system Earthing:	
	Earthing definition, soil resistivity, step and touch potentials,	
	measurement of earth resistance, soil resistivity, neutral grounding	
	and its methods.	

Note: *Numerical should be covered in Tutorials.

Books Recommended:

Text Books:

- 1. Wadhwa C.L. 'Electrical power system', New Age International,4th edition,2005
- 2. J B. Gupta, 'A Course In Power Systems', S. K. Kataria & Sons, 2009
- 3. Soni M.L., Bhatanagar U.S, Gupta P.V, 'A course in electrical power', Dhampat Rai and Sons., 1987
- 4. D. P. Kothari, I. J. Nagrath, 'Modern Power System Analysis', Mc Graw Hill
- 5. B.R. Gupta, 'Power System Analysis And Design', S.Chand
Reference Books:

1. Stevenson, Modern power system analysis, TMH publication

2. Mehta V.K., Principle of power system, S Chand

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (min two). The distribution of marks for term work shall be as follows:

Tutorial	:15 marks
Assignments	:05 marks
Attendance (Theory and Tutorial)	:05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai						
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned		
		Theory	Tutorial	Theory	Tutorial	Total
EEC403	Electrical Machine–II (abbreviated as EMC-II)	4	-	4	-	4

		Examination Scheme						
Course code	Course Name	Theory					Total	
		Internal		End	Exam	Term	Total	
		Assessment			Sem.	Duration	Work	Total
		Test 1	Test 2	Avg	Exam	(Hrs)		
EEC403	Electrical Machine-II	20	20	20	80	3	-	100

Course Objectives	 To impart the knowledge of working principle, operations, performance and applications of single phase and three phase Transformers. To understand the design of transformer with its cooling system. To understand the performance parameters of transformers
Course Outcomes	 Students will be able To illustrate the working principle of single phase and three phase transformer To illustrate the working principle of auto-transformer To analyse various type of connections of three phase transformer. To analyse performance of transformer under various operating conditions To illustrate various design aspects of transformer. To analyse the characteristics of CT and VT.

Module	Contents	Hours
1	Single phase Transformer :- Review of EMF equation, Equivalent	10
	Circuit, Phasor diagram, voltage regulation, Losses and Efficiency.	
	Condition for Maximum Efficiency, All day Efficiency, Separation	
	of Hysteresis and Eddy current losses. Parallel Operation: No load	
	Operation, On load Operation: - Equal Voltage Operation and	
	Unequal Voltage Operation, Testing of Transformer: - Polarity Test,	
	OC and SC test, Sumpner's Test, Impulse test	
2	Autotransformer:- Working, Advantages of Autotransformer over	04
	Two winding Transformer, Disadvantages. Introduction to High	
	Frequency Transformer, Pulse Transformer, Isolation Transformer	
	and its applications.	
3	Three Phase Transformers- Construction and parts of transformer	10
	(design approach), Three phase transformer connections and phasor	

12
08
04
<u>s</u> , <u>s</u> , <u>t</u> <u>e</u> <u>g</u> <u>t</u> <u>s</u> , <u>t</u> <u>s</u> , <u>s</u>

Books Recommended:

Text Books:

- 1. Bimbhra P. S., Electric Machinery , Khanna Publisher,
- 2. Bimbhra P. S., Generalized Machine Theory, Khanna Publisher,
- 3. E. G. Janardanan, Special Electrical Machines, PHI
- 4. V. K. Mehta, Principles of Electrical Machines, S Chand Publication
- 5. Switchgear & Protection by Sunil.S.Rao, Khanna Publications
- 6. A. K. Sawhney, "Electrical Machine Design", Dhanpat Rai & Co
- 7. M. V. Deshpande, "Design and Testing of Electrical Machines", PHI Learning

Reference Books:

- 1. M.G. Say and E. O. Taylor, Direct current machines, Pitman publication
- 2. Ashfaq Husain, *Electric Machines*, Dhanpat Rai and co. publications
- 3. Vedam Subramanyam, Electrical Drive-concept and applications, TMH Publication
- 4. A. E. Fitzgerald, Kingsly, Stephen., *Electric Machinery*, Tata McGraw Hill

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai						
Course code	Course Name	Teachii (Conta	ng scheme ct Hours)	Credits Assigned		
		Theory	Tutorial	Theory	Tutorial	Total
EEC404	Electromagnetic Fields and Waves (Abbreviated as EFW)	3	1	3	1	4

Course Code		Examination Scheme						
	Course Name	Theory						
		Internal Assessment			End	Exam.	Term	Total
		Test 1	Test 2	at 2 Avg	Sem.	Duration	work	Total
					Exam.	(Hrs)		
EEC404	Electromagnetic Fields and Waves	20	20	20	80	03	25	125

Course Objectives	 To impart the knowledge of electro-physics. Expose students Electric and magnetic field and their application in electrical engineering
Course Outcomes	 Students will be able To apply knowledge of mathematics and physics in electrical engineering field. To analyse electrostatic and static magnetic fields. To analyse the effect of material medium on electric and magnetic fields. To analyse and formulate time varying electric and magnetic fields. To analyse wave generation and its propagation in different media. To analyse static magnetic field and electrostatic field distribution using software tool.

Module	Contents					
1	Vector Basics:	04				
	Concept of Scalar and Vector, Co-ordinate System: Rectangular,					
	Cylindrical and Spherical Co-ordinate System, Co-ordinate and vector					
	transformation, (Numerical on line, Surface and Volume Integrals)					
2	Static Electric Fields:	08				
	Coulomb's Law in Vector Form, Electric Field Intensity, Definition,					
	Principle of Superposition, Electric Field due to point charges, Electric					
	Field due to line charge (one and two conductor transmission lines),					
	Electric Field due to an infinite uniformly charged sheet, Definition and					
	physical interpretation of gradient, Electric scalar potential, Relationship					

	between potential and electric field and its application on Surface voltage	
	gradient on conductor, Potential due to electrical dipole and flux lines,	
	Electric Flux Density, Gauss Law, Definition and physical Significance	
	of Divergence, Divergence theorem	
3	Static Magnetic Fields:	08
	The Biot-Savart's Law in vector form, Magnetic Field intensity due to a	
	finite and infinite wire carrying a current I, Magnetic field intensity on	
	the axis of a circular loop carrying a current I, Ampere's circuital law and	
	its application on A solid cylindrical conductor and Infinitely long co-	
	axial transmission line, Magnetic flux density, Definition and physical	
	Interpretation of Curl, The Lorentz force equation for a moving charge	
	and its applications on Force on a wire carrying a current I placed in a	
	magnetic field, Torque on a loop carrying a current I, Magnetic moment,	
	Magnetic Vector Potential.	
4	Electric and Magnetic Fields in Materials:	08
	Poisson's and Laplace's equation and its application on Estimation and	
	control of electric stress, control of stress at an electrode edge. Electric	
	Polarization. Definition of Capacitance. Capacitance of two parallel	
	plate. Co-axial. Spherical and Capacitance of two conductor of a single	
	phase line. Electrostatic energy and energy density. Boundary conditions	
	for electric and magnetic field. Electric current, Current density, Point	
	form of ohm's law. Continuity equation for current. Definition of	
	Inductance, Inductance of loops and solenoids, Flux linkage within and	
	outside the conductor producing the flux. Energy density in magnetic	
	fields.	
5	Time varying Electric and Magnetic Fields:	04
C	Faraday's law Maxwell's Second Equation in integral form from	0.
	Faraday's Law Equation expressed in point form Displacement current	
	Ampere's circuital law in integral form Modified form of Ampere's	
	circuital law as Maxwell's first equation in integral form Equation	
	expressed in point form Maxwell's four equations in integral form and	
	differential form	
6	Wave theory:	04
	Derivation of Wave Equation Uniform Plane Waves Maxwell's	
	equation in phasor form Wave equation in phasor form Plane waves in	
	free space and in a homogenous material Wave equation for a	
	conducting medium Plane waves in lossy dielectrics Propagation in	
	good conductors Skin effect	
	good conductors, Skill effect.	

Books Recommended:

Text books:

- 1. W. Hayt., "Engineering electromagnetic", McGraw Hill, 4th edition, 1987.
- Edminister, "Schaum's series in electromagnetic" McGraw Hill publications, 3rd edition, 1986.
- 3. N. Narayan Rao, "Elements of Electromagnetic", PHI publication, 4th edition, 2001.
- 4. E.C. Jordan & K.G. Balmain "Electromagnetic Waves and Radiating Systems." Prentice Hall of India 2nd edition 2003. (Unit IV, V). McGraw-Hill, 9th reprint
- 5. G.S.N. Raju, " Electromagnetic Field Theory and Transmission Lines" Pearson publications, fifteenth impression, 2013.
- 6. S. K. Singh.,"Fundamentals of High Voltage Engineering", Dhanpat Rai & Co. First edition,2014.
- 7. Dr. B.R. Gupta.,"Power System Analysis and Design", S. Chand, First edition, 1998.
- 8. John D. Kraus & Keith R. Carver "Electromagnetics", McGraw-Hill Inc. 1973.

Reference books:

- 1. Fenmann, "Lectures on physics", Vol 2, Addition Wesley, 1965
- 2. S. seely, "Introduction to electromagnetic fields", McGraw Hill, 1958.
- 3. David K. cheng, "Field and electromagnetic", Addison Wesley, 2nd edition, 1999.
- 4. Corson and lerrain, "Electromagnetic", CBS publications, 2nd edition, 1986.
- 5. Ramo, Whinnery and Van Duzer: "Fields and Waves in Communications Electronics" John Wiley & Sons (3rd edition 2003)
- 6. M.N.O.Sadiku: "Elements of Engineering Electromagnetics" Oxford University Press, Third edition.
- 7. David K.Cherp: "Field and Wave Electromagnetics Second Edition-Pearson Edition.
- 8. David J.Grithiths: "Introduction to Electrodynamics- III Edition-PHI
- 9. John Reitz, Frederick Milford, Robert Christy, "Foundations of Electromagnetic Theory" Pearson publications, fourth impression, 2013.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Term work:

Term work consists of minimum eight tutorials (at least one on each module) and assignments (min. 2). The distribution of the term work shall be as follows:

Tutorials	:15 marks
Assignments	:05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term-work ensures the minimum passing in the term-work.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching Scheme (Contact Hours)		Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEC405	Analog and Digital	3	_	3	_	3		
	(abbreviated as ADIC)	5	-	5	-	5		

Course Code	Course Name	Examination Scheme							
		Theory							
		Interna	Internal Assessment			Exam.	Term	Total	
		Test 1	Test 2	Avg	Sem.	Duration	Work	Total	
					Exam	(in Hrs)			
EEC405	Analog and Digital Integrated Circuits	20	20	20	80	3	-	100	

Course Objectives	 To introduce the basic building blocks, theory and applications of linear integrated circuits. To develop ability among students for problem formulation, system design and solving skills
Course Outcomes	 Students will be able To illustrate various performance parameters and characteristics of operational amplifier. To illustrate various linear and non-linear application of operational amplifiers. To design and analyse linear voltage regulators and multivibrators. To do various conversion of number systems and illustrate logic families. To build design and analyse combinational circuits
	 To build, design and analyse sequential circuits.

Module	Contents	Hours
1	Operational Amplifiers: Fundamentals	03
	Introduction to Differential amplifier, Block diagram of Op-amp	
	Basics of an Op-amp, Op-amp parameters, Frequency response	
2	Application of Operational Amplifiers	08
	Voltage follower, design of inverting and non- inverting amp, adder,	
	subtractor, integrator and differentiator, V to I and I to V converter,	
	Schmitt trigger, sample and hold circuits, active filters: first order	
	LPF, Instrumentation amplifier (3 Op-amp) with applications,	
	Optical isolation amplifier	

3	Linear Voltage Regulators –	06
	IC -78xx, 79xx, LM 317. Design of adjustable voltage source using	
	IC- LM317, Low Dropout (LDO) voltage regulator	
	IC-555-	
	Functional block diagram, Applications of IC 555, Design of	
	Multivibrator (Monostable and Astable)	
4	Logic families -	06
	Review of Number formats: Binary, hexadecimal, BCD and their	
	basic math operations (addition and subtraction) Introduction to	
	Logic gates and Boolean Algebra. Specifications of Digital IC,	
	Logic Families: TTL,CMOS logic families, Comparison of TTL and	
	CMOS, Interfacing of TTL and CMOS	
5	Combinational Logic Circuit -	08
	K-Maps and their use in specifying Boolean expressions upto 4	
	variables, Minterm, Maxterm, SOP and POS implementation	
	Implementing logic function using universal gates, Binary	
	Arithmetic circuits: Adders, Subtractors (Half and Full), Multiplier,	
	2 bit comparators, Designing code converter circuit - binary to	
	gray, Gray to Binary, Multiplexer (ULM), De- multiplexers.	
6	Sequential Logic Circuits -	05
	Comparison of combinational & sequential circuit	
	Flip-flops -	
	SR, T, D, JK, Master Slave JK, Converting one flip-flop to another,	
	Use of debounce switch	
	Counters-	
	Modulus of counter, Design of Synchronous, Asynchronous	
	counters, Ripple counters, Up/Down Counter, Ring counter,	
	Shift Registers – Right and left shift registers	

Books Recommended:

Text Books:

- 1. Gayakwad Ramakant A, Op-amps and Linear Integrated Circuits, Prentice Hall PTR,
- 2. Boatkar K. R., "Integrated Circuits", Khanna Publication.
- 3. D. Roy Choudhury, Shali B Jain, "Linear Integrated Circuits" New Age International Publication.
- 4. Millman and Halkias, 'Integrated Electronics', Tata McGraw Hill,
- 5. A. Anand Kumar, "Fundamentals of Digital Circuits", PHI-2009
- 6. Jain R.P., "Modern Digitals Electronics", Tata McGraw Hill, 1984.
- 7. Roger L. Tokheim, "Digital Electronics", Tata McGraw Hill

Reference Books:

- 1. Design with OPAMP analog Ics by Sergio Franco. McGraw Hill 1998 2nd edition.
- 2. Boylestad Robert and Nashelsky Louis '*Electronic Devices and Circuits*', Prentice-Hall of India,
- 3. Newman D.A., 'Electronic Circuit Analysis and Design', McGraw Hill International.

- 4. David Bell, Electronic Devices and Circuits, 5e Oxford University Press
- 5. George Clayton, Steve Winder, 'Operational Amplifiers', Newnes
- 6. Alan b. Marcovitz, "Introduction to logic Design", McGraw Hill International 2002.
- 7. Malvino & Leach, "Digital principal and Application", Tata McGraw Hill, 1991.
- 8. Bignell James & Donovan Robert "*Digital Electronics*", Delmar, Thomas Learning, 2001.
- 9. Jog N.K. 'Logic Circuits", 2nd Edition, Naidu Publishers & Printers Pvt. Ltd 1998.
- 10. Paul M. Chirlian, "Analysis and Design of Integrated Electronic Circuits", 2nd Edition, John Wiley and Sons
- 11. Morris M. Mano. "Digital Design", Prentice Hall International 1984.
- 12. Donald D. Givone, "Digital Priciples and Designs" Tata McGraw Hill

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEC406	Electrical Network (abbreviated as EN)	3	1	3	1	4		

Course		Examination Scheme							
	Course								
		Internal Assessment			End	Exam	Term	Total	
couc	Name	Test 1	Test 2	Δνα	Sem.	Duration	Work	Total	
			1051 2	2 Avg	Exam	(Hrs)			
FFC406	Electrical	20	20	20	80	3	25	125	
EEC400	Network	20	20	20	00	5	25	123	

Course Objectives	 To impart the knowledge of various fundamental techniques for analysis of electrical network from application point of view. To mold creative engineers needed in education and industrial development along with problem solving skills.
Course Outcomes	 Students are able To analyze electrical network using different Network theorems. To analyze electrical network using Graph theory. To analyze the effect of switching conditions on Electrical networks using Differential equations. To analyze the effect of switching conditions on Electrical networks using Laplace Transform. To develop transfer function model of system using two port network parameters. To analyze time domain behavior from pole zero plot

Module	Contents	Hours
1	Solution of Network:	10
	with DC Dependent Sources:	
	Mesh analysis, Super mesh analysis, Nodal analysis, Super node	
	analysis, Source transformation and Source shifting. Superposition	
	theorem, Thevenin's theorems and Norton's theorem and Maximum	
	power transfer theorem.	
	with AC Sources:	
	Magnetic coupling, Mesh analysis, Nodal analysis, Superposition	
	theorem, Thevenin's theorems, Norton's theorem, Maximum power	
	transfer theorem and Reciprocity theorem	
2	Graph Theory and Network Topology:	05
	Introduction, Graph of network, Tree, Co-tree, Loop incidence matrix,	

	Cut set matrix, Tie set matrix and Loop current matrix, Number of	
	possible tree of a graph, Analysis of network equilibrium equation and	
	Principle of duality.	
3	First Order and Second Order Differential Equations:	05
	Behaviors of network elements under switching condition and their	
	representation, Solution of initial and final condition in RL, RC and	
	RLC networks for AC and DC sources.	
4	The Laplace Transform:	05
	The Laplace transform and its application to network analysis,	
	transient and steady state response to step, ramp and impulse signals.	
5	Two port parameters:	05
	Open circuit, short circuit, transmission and hybrid Parameters,	
	relationships between parameter sets, reciprocity and symmetry	
	conditions, parallel connection of two port networks	
6	Network Functions; Poles and Zeros:	06
	Network functions for one port and two port networks, Driving point	
	and transfer functions, ladder network, General network, poles and	
	zeros of network functions, restrictions on Pole and zero locations for	
	driving point functions and Transfer functions, time domain behavior	
	from pole - zero plot.	

Note: Numerical should be covered in Tutorials.

Books Recommended:

Text Books:

1. W H Hayt, S M Durbin, J E Kemmerly, '*Engineering Circuit Analysis*', 7th Edition Tata McGraw-Hill Education.

2. M. E. Van Valkenburg, 'Network Analysis', 3rd Edition, PHI Learning.

3. D. Roy Choudhury, 'Networks and Systems', 2nd Edition, New Age International.

4. M. E. Van Valkenburg, 'Linear Circuits', Prentice Hall.

Reference Books:

1. F. F. Kuo,' Network Analysis and synthesis', John Wiley and sons.

2. N Balabanian and T.A. Bickart, 'Linear Network Theory: Analysis, Properties, Design and Synthesis', Matrix Publishers, Inc.

3. C. L.Wadhwa, 'Network Analysis and synthesis', New Age international.

4. B. Somanathan Nair, "Network Analysis and Synthesis", Elsevier Publications

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Term work:

Term work consists of minimum eight tutorials (at least one on each module) and assignments (min. 2). The distribution of the term work shall be as follows:

Tutorials	:15 marks
Assignments	:05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term-work ensures the minimum passing in the term-work.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching Scheme (Contact Hours)		Credits Assigned				
		Theory	Practical	Theory	Practical	Total		
EEL401	Simulation Lab-I (abbreviated Sim Lab-I)	-	2	-	1	1		

Course Code	Course Name	Examination Scheme								
			The	ory		Practical				
		Internal Assessment			End	Torm	Pract.		Total	
		Test 1	Test 2	Avg	Sem.	Work	and	Oral		
					Exam	WOIK	Oral			
EEL401	Simulation Lab-I	-	-	-	-	25	-	25	50	

Course Objectives	 To understand basic block sets of different simulation platform used in electrical system design. To understand coding in different programming software's used in electrical system design
Course Outcomes	 Students are able To simulates electrical circuits for their performance analysis. To develop algorithms for electrical circuits for their performance analysis. To simulates electronic circuits for their performance analysis. To develop algorithms for electronic circuits for their performance analysis.

Suggested List of Laboratory Experiment:

- 1. Introduction to basic block sets of simulation platform.
- 2. Simulation of single phase bridge rectifier without filter
- 3. Simulation of single phase bridge rectifier with filter
- 4. Simulation of UJT as a relaxation oscillator
- 5. Algorithm on matrix operations
- 6. Simulation for OC and SC test of single phase transformer
- 7. Simulation of transmission line model
- 8. Algorithms to determine transmission line performance and parameters
- 9. Algorithm for generation of standard test signals
- 10. Simulation of differential equations
- 11. Simulation to verify different network theorems with dependent and independent sources
- 12. Simulation of DC motor performance characteristics
- 13. Simulation / Algorithms to draw the pole zero plot of electrical network
- 14. Simulation / Algorithms to draw the response of electrical network for standard test signals.

Any other simulations / algorithms based on third and fourth semester syllabus, which will help students to understand topic / concept.

Term work:

Term work consists of minimum 8 simulation / algorithms (at least one on each domain). The distribution of the term work shall be as follows:

Simulation / Algorithm :20 marks

Attendance :05 marks

The final certification and acceptance of term-work ensures the minimum passing in the term-work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai									
Course	Course Name	Teachir (Conta	ng Scheme ct Hours)	Credits Assigned					
Code		Theory	Practical	Theory	Practical	Total			
EEL402	Electrical Machine Lab-II (abbreviated EMC Lab-II)	-	2	-	1	1			

Course Code		Examination Scheme							
		Theory				Practical			
	Course Name	Internal Assessment			End	Torm	Pract.		Total
		Test 1 Te	Test 2	Δνσ	Sem.	Sem. Exam Work	and	Oral	
		1050 1	1050 2	Avg	Exam		Oral		
	Electrical								
EEL402	Machine Lab -	-	-	-	-	25	25	-	50
	II								

Course Objectives	 To impart the knowledge of working principle, operations, performance and applications of single phase and three phase Transformers. To understand the performance parameters of transformers
Course Outcomes	 Students will be able To demonstrate the working principle of single phase and three phase transformer To demonstrate the working principle of auto-transformer To analyse various type of connections of three phase transformer. To analyse performance of transformer under various operating conditions To analyse the characteristics of CT and VT.

Syllabus: Same as that of Course EEC403 Electrical Machine - II

Suggested List of Laboratory Experiment:

- 1. O.C & S.C. Test on 1Φ Transformer
- 2. Sumpner's Test on 1Φ Transformer
- 3. Separation of iron loss into hysteresis and eddy current loss components in $a1\Phi$ Transformer
- 4. Load Test on 1Φ Transformer
- 5. Open circuit & Short circuit test on three phase transformer
- 6. Parallel operation of transformers
- 7. Scott connection of transformer
- 8. Open Delta connection of transformer

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum 6 experiments. The distribution of marks shall be as follows:

Experiments Performance:10 marksJournal:10 marks

Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai									
Course Code	Course Name	Teachir (Conta	ng Scheme ct Hours)	Credits Assigned					
		Theory	Practical	Theory	Practical	Total			
EEL403	Electronics Lab-II (abbreviated EL Lab-II)	-	2	-	1	1			

Course Code	Course Name	Examination Scheme								
		Theory]				
		Internal Assessment			End	Torm	Pract.		Total	
		Test 1	Test 2	Avg	Sem.	Work	and	Oral		
					Exam	WOIK	Oral			
EEL403	Electronics Lab-II	-	-	-	-	25	25	-	50	

Course Objectives	 To introduce the basic building blocks, theory and applications of linear integrated circuits. To develop ability among students for problem formulation, system design and solving skills
Course Outcomes	 Students will be able To demonstrate various performance parameters and characteristics of operational amplifier. To demonstrate various linear and non-linear application of operational amplifiers. To build, design, and analyse linear voltage regulators and multi
	 vibrators To build, design and analyse combinational circuits. To build, design and analyse sequential circuits.

Syllabus: Same as that of Course EEC405 Analog and Digital Integrated Circuits.

Suggested List of Laboratory Experiments:

- 1. Linear applications of op-amp
- 2. Non linear applications of op-amp
- 3. Active filters
- 4. Design and implementation of variable voltage regulator using IC 317
- 5. Design and implementation of astable multivibrator
- 6. Design and implementation of monostable multivibrator
- 7. Design and implementation of VCO.
- 8. Implementing a Binary to Gray, gray to binary or Binary to XS3 code converter using gate ICs.
- 9. Constructing flip-flops like SR, D, JK and T using all NAND gates and a debounce

switch.

- 10. Designing a mod N counter where N <14 using J K flip-flops and D flip-flops.
- 11. Design of a ripple counter
- 12. Design two bit comparator using gate ICs.
- 13. Building of a ring counter and twisted ring counter using D flip-flop ICs.
- 14. Any one of the following
 - (i) Full Adder using Gates and using Decoder or a Multiplexer.
 - (ii) Using a shift register as a sequence generator.

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum 10 experiments. The distribution of marks for term work shall be as follows:

Experiments Performance :10 marks Journal :10 marks

Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai									
Course Code	Course Name	Teachir (Conta	ng Scheme ct Hours)	Credits Assigned					
		Theory	Practical	Theory	Practical	Total			
EEL404	Electrical Workshop (abbreviated EW/S)	-	2	-	1	1			

Course Code	Course Name	Examination Scheme								
		Theory]				
		Internal Assessment			End	Torm	Pract.		Total	
		Test 1	Test 2	Avg	Sem.	Work	and	Oral		
					Exam	WOIK	Oral			
EEL404	Electrical Workshop	-	-	-	-	25	-	25	50	

Course Objectives	 To introduce the basic laboratory instruments used for measurement purpose. To develop the ability to handle electrical equipment.
Course Outcomes	 Students will be able To demonstrate various electrical and electronic measuring equipment's. To identify various electrical and power electronic components. To repair and do maintenance of households appliances. To identify and use different low voltage protective switchgears. To identify and use different wiring accessories and tools.

Syllabus:-

Module	Contents	Hours					
1	Introduction of lab equipment's and electrical elements:	03					
	Introduction to different equipment in the lab (multi-meter, CRO,						
	DSO, power supplies, function generators);						
	Resistors, presets, potentiometers, inductors (iron core and ferrite						
	core), capacitors of different ratings.						
	Electromagnetic Relays, MOVs,						
2	Introduction to different electronic components:	03					
	different ratings, packages, terminals, sizes and shapes, testing						
	methods of diodes (rectifier, ultrafast, schotkey, power, zener, LED),						
	transistors(BJT), SCRs, GTOs, MOSFETs, IGBTs, DIACs, TRIACs,						
	intelligent power modules (IPM) (Minimum Three)						
	Different PCB connectors, Terminal, Terminal Blocks;						
	Transformers used for electronic circuits (pulse, high frequency)						

2	Commonly used ICs.	04
5	Commonly used ICS:	04
	Data sheet reading of commonly used ICs (buffers, opto-couplers, gate	
	drivers, PWM ICs, Real time clock ICs, PLL ICs, seven segment	
	display and driver) (Minimum Three)	
4	Hardware implementation of Electronics circuits:	06
	Soldering techniques and equipments, PCB Layout (artwork) design	
	using software and Fabrication itching process. Testing and debugging	
	process of assembled circuits	
5	Residential/Industrial Wiring:	04
	Wiring materials, selection of wire, different switching and protection	
	devices (MCBs/ Fuses/Relays), Cables and cable management	
	Estimation and costing of residential wiring (Simple numerical on	
	wiring of single room), connection of energy meter and distribution	
	board, wiring standards (IS-732, section 4)	
6	Repair of house hold appliances and machines:	04
	Testing, fault finding, Dismantling, assembling and testing after repairs	
	of house hold appliances like fan and regulator, heater, geyser, mixer,	
	washing machine, microwave oven etc.(minimum Two)	
	Troubleshooting charts for 1 ph and 3ph transformers and motors	
	(Minimum one transformer and one motor)	

Books Recommended:

- 1. J. B. Gupta Electrical Installation Estimating & costing
- 2. Raina Bhattachraya Estimating dsign & costing
- 3. Allasappan & Ekambarm Estimating design & costing
- 4. S L Uppal Estimating & costing
- 5. Surjit Singh Electrical Estimating & costing
- 6. K B. Bhatia: Electrical Appliances

Suggested List of Laboratory Experiments:

- 1. Study of different symbols and tools used in Electrical Engineering
- 2. Identify values of different resistors and capacitor using color code and DMM
- 3. Identify different types of cables/wires, switches and their uses.
- 4. Identify different types of fuses & fuse carriers, MCB and ELCB, MCCB with ratings and usage.
- 5. Wiring of simple light circuit for controlling light/fan point (PVC conduit wiring and wiring accessories)
- 6. Wiring of fluorescent lamps and light sockets (6 A).
- 7. Wiring of Power circuit for controlling power device (16A socket)
- 8. Design of Staircase wiring / Go-down wiring / Tunnel wiring

- 9. Demonstration and measurement of power/energy consumption and repair maintenance of electric iron/mixer grinder/ washing machine/refrigerator/ air conditioner/water heater/geyser/single phase pump/exhaust fan.
- 10. Verifying the fusing time of rewireable fuses.
- 11. To identify terminology of various semiconductor devices.

Any other experiment based on syllabus which will help students to understand topic/concept.

Term Work:

Term work shall consist of minimum 8 experiments. The distribution of marks for term work shall be as follows:

Laboratory Performance: 10 marksJournal: 10 marksAttendance: 05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.

Program Structure for TE Electrical Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester V

Course Code	Course Code Course Name		eaching Schem Contact Hours	le)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
EEC501	Power System - II	4	-	1	4	-	1	5		
EEC502	Electrical Machines - III	4	-	-	4	-	-	4		
EEC503	Control System - I	4	-	-	4	-	-	4		
EEC504	Power Electronics	4	-	-	4	-	-	4		
EEDLO501X	Department Level Optional Course-I	3	-	1	3	-	1	4		
EEL501	Business Communication and Ethics	-	4**	-	-	2	-	2		
EEL502	Control System Lab	-	2	-	-	1	-	1		
EEL503	Electrical Machines Lab - III	-	2	-	-	1	-	1		
EEL504	Power Electronics Lab	-	2	-	-	1	-	1		
Total		19	10	2	19	5	2	26		

****** Out of four hours, 2 hours theory shall be taught to entire class and 2 hours practical in batches

Examination Scheme for Semester V

						Ех	kaminati	ion Sche	eme					
			The	eory										
Course Code	Course Name	External (UA)		Internal (CA)		Term Work		Practical		Oral		Pract./Oral		Total
		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC501	Power System - II	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC502	Electrical Machines - III	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC503	Control System - I	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC504	Power Electronics	80	32	20	8	-	-	-	-	-	-	-	-	100
EEDLO 501X	Department Level Optional Course-I	80	32	20	8	25	10	-	-	-	-	-	-	125
EEL501	Business Communication and Ethics	-	-	-	-	50	20	-	-	-	-	-	-	50
EEL502	Control System Lab	-	-	-	-	25	10	-	-	25	10	-	-	50
EEL503	Electrical Machines Lab - III	-	-	-	-	25	10	-	-	-	-	25	10	50
EEL504	Power Electronics Lab	_	_	_	_	25	10	-	-	_	-	25	10	50
	Total	400	-	100	-	175	-	-	-	25	-	50	-	750

Program Structure for TE Electrical Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester VI

Course Code	Course Name	Te (0	eaching Sche Contact Hou	me rs)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
EEC601	Protection and Switchgear Engineering	3	-	-	3	-	-	3		
EEC602	Electrical Machines - IV	4	-	-	4	-	-	4		
EEC603	Signal processing	3	-	1	3	-	1	4		
EEC604	Microcontroller and its Applications	4	-	-	4	-	-	4		
EEC605	Control System - II	4	-	-	4	-	-	4		
EEDLO602X	Department Level Optional Course-II	3	-	1	3	-	1	4		
EEL601	Electrical Protection Lab	-	2	-	-	1	-	1		
EEL602	Electrical Machines Lab - IV	-	2	-	-	1	-	1		
EEL603	Microcontroller Lab	-	2	-	-	1	-	1		
EEL604 Simulation Lab – II		-	2	-	-	1	-	1		
	21	8	2	21	4	2	27			

Examination Scheme for Semester VI

						Ex	aminati	ion Sche	eme					
			The	eory										
Course	Course Name	External (UA)		Internal (CA)		Term Work		Practical		Oral		Pract./Oral		Total
Code		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC601	Protection and Switchgear Engineering	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC602	Electrical Machines - IV	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC603	Signal processing	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC604	Microcontroller and its Applications	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC605	Control System - II	80	32	20	8	-	-	-	-	-	-	-	-	100
EEDLO602 X	Department Level Optional Course-II	80	32	20	8	25	10	-	-	-	-	-	-	125
EEL601	Electrical Protection Lab	-	-	-	-	25	10	-	-	25	10	-	-	50
EEL602	Electrical Machines Lab - IV	-	-	-	-	25	10	-	-	-	-	25	10	50
EEL603	Microcontroller Lab	-	-	-	-	25	10	-	-	-	-	25	10	50
EEL604	Simulation Lab – II	-	-	-	-	25	10	-	-	25	10	-	_	50
	Total	480	-	120	-	150	-	-	-	50	-	50	-	850

Program Structure for BE Electrical Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VII

Course Code	Course Name	T (1	eaching Schen Contact Hours	ne 5)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
EEC701	Power System - III	4	-	1	4	-	1	5		
EEC702	Drives and Control	4	-	-	4	-	-	4		
EEC703	High Voltage Direct Current Transmission	4	-	-	4	-	-	4		
EEDLO703X	Department Level Optional Course-III	3	-	1	3	-	1	4		
ILO701X	Institute Level Optional Course-I	3	-	-	3	-	-	3		
EEL701	Simulation Lab - III	-	2	-	-	1	-	1		
EEL702	Drives and Control Lab	-	2	-	-	1	-	1		
EEL703	Project-I	-	6	-	-	3	-	3		
Total		18	10	2	18	5	2	25		

Examination Scheme for Semester VII

						Ex	kaminati	ion Sche	eme					
			The	eory		T					ral	Pract /Oral		
Course	Course Name	External (UA)		Internal (CA)				Tacucal						Total
Code		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC701	Power System - III	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC702	Drives and Control	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC703	High Voltage Direct Current Transmission	80	32	20	8	-	-	-	-	-	-	-	-	100
EEDLO 703X	Department Level Optional Course-III	80	32	20	8	25	10	-	-	-	-	-	-	125
ILO701 X	Institute Level Optional Course-I	80	32	20	8	-	-	-	-	-	-	-	-	100
EEL701	Simulation Lab - III	-	-	-	-	25	10	-	-	25	10	-	-	50
EEL702	Drives and Control Lab	-	-	-	-	25	10	-	-	-	-	25	10	50
EEL703	Project-I	-	-	-	-	25	10	-	-	25	10	-	-	50
	Total	400	-	100	-	125	-	-	-	50	-	25	-	700

Program Structure for BE Electrical Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VIII

Course	Course Name]	Feaching Sche (Contact Hou	me rs)	Credits Assigned					
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
EEC801	Design, Management and Auditing of Electrical Systems	4	-	1	4	-	1	5		
EEC802	Flexible AC Transmission System	4	-	-	4	-	-	4		
EEDLO80 4X	Department Level Optional Course-IV	3	-	1	3	-	1	4		
ILO802X	Institute Level Optional Course-II	3	-	-	3	-	-	3		
EEL801	Simulation Lab - IV	-	2	-	-	1	-	1		
EEL802	Electrical System Design Lab		2	-	-	1	-	1		
EEL803	Project-II	-	12	-	-	6	-	6		
	Total	14	16	2	14	8	2	24		

Examination Scheme for Semester VIII

						Ex	kaminati	ion Sche	eme					
Course	Course Name	The External (UA)		eory Internal (CA)		Term Work		Practical		Oral		Pract./Oral		
Code		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC801	Design, Management and Auditing of Electrical Systems	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC802	Flexible AC Transmission System	80	32	20	8	-	-	-	-	-	-	-	-	100
EEDLO 804X	Department Level Optional Course-IV	80	32	20	8	25	10	-	-	-	-	-	-	125
ILO802 X	Institute Level Optional Course-II	80	32	20	8	-	-	-	-	-	-	-	-	100
EEL801	Simulation Lab - IV	-	-	-	-	25	10	-	-	25	10	-	-	50
EEL802	Electrical System Design Lab					25	10	-	-	25	10	-	-	50
EEL803	Project-II	_	_	_	_	50	20	_	_	50	20	-	-	100
	Total	320	-	80	-	150	-	-	-	100	-	-	-	650

List of Department Level Optional Courses

Course Code	Department Level Optional Course - I
EEDLO5011	Communication Engineering
EEDLO5012	Renewable Energy and Energy Storage
EEDLO5013	Utilization of Electrical Energy

Course Code	Department Level Optional Course - II
EEDLO6021	Digital Communication Engineering
EEDLO6022	Micro-grid
EEDLO6023	Advanced Power Electronics

Course Code	Department Level Optional Course - III
EEDLO7031	High Voltage Engineering
EEDLO7032	Electric Vehicle Technology
EEDLO7033	Industrial Controller
EEDLO7034	Power Quality

Course Code	Department Level Optional Course - IV
EEDLO8041	Illumination Engineering
EEDLO8042	Smart Grid
EEDLO8043	Power System Modeling and Control
EEDLO8044	Power System Planning and Reliability

List of Institute Level Optional Courses

Course Code	Institute Level Optional Course - I
ILO7011	Product Lifecycle Management
ILO7012	Reliability Engineering
ILO7013	Management Information System
ILO7014	Design of Experiments
ILO7015	Operation Research
ILO7016	Cyber Security and Laws
ILO7017	Disaster Management and Mitigation Measures
ILO7018	Energy Audit and Management
ILO7019	Development Engineering

Course Code	Institute Level Optional Course - II
ILO8021	Project Management
ILO8022	Finance Management
ILO8023	Entrepreneurship Development and Management
ILO8024	Human Resource Management
ILO8025	Professional Ethics and Corporate Social
	Responsibility (CSR)
ILO8026	Research Methodology
ILO8027	IPR and Patenting
ILO8028	Digital Business Management
ILO8029	Environmental Management

UNIVERSITY OF MUMBAI No. UG/ 41 of 2018-19

CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/179 of 2017-18, dated 8th August, 2017 relating to syllabus of the Bachelor of Engineering (B.E.) degree course.

They are hereby informed that the recommendations made by the Board of Studies in Electrical Engineering at its meeting held on 9th April, 2018 have been accepted by the Academic Council at its meeting held on 5th May, 2018 vide item No. 4.52 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T.E. & B.E. in Electrical Engineering (Sem - V to VIII) has been brought into force with effect from the academic year 2018-19 and 2019-2020, accordingly. (The same is available on the University's website www.mu.ac.in).

> (Dr. Dinesh Kamble) I/c REGISTRAR

ununt

MUMBAI - 400 032 2,5 June, 2018

То

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C/4.52/05/05/2018

No. UG/ 41 -A of 2018

MUMBAI-400 032 25th June, 2018

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies in Electrical Engineering,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Co-Ordinator, University Computerization Centre,

many

(Dr. Dinesh Kamble) I/c REGISTRAR

AC Item No.

UNIVERSITY OF MUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17

Under

FACULTY OF TECHNOLOGY

Electrical Engineering

Third Year with Effect from AY 2018-19

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

Program Structure for TE Electrical Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester V

Course Code	Course Name	Г)	Ceaching Schem Contact Hours	le)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
EEC501	Power System - II	4	-	1	4	-	1	5		
EEC502	Electrical Machines - III	4	-	-	4	-	-	4		
EEC503	Control System - I	4	-	-	4	-	-	4		
EEC504	Power Electronics	4	-	-	4	-	-	4		
EEDLO501X	Department Level Optional Course-I	3	-	1	3	-	1	4		
EEL501	Business Communication and Ethics	-	4**	-	-	2	-	2		
EEL502	Control System Lab	-	2	-	-	1	-	1		
EEL503	Electrical Machines Lab - III	-	2	-	-	1	-	1		
EEL504	Power Electronics Lab		2	-	-	1	-	1		
Total		19	10	2	19	5	2	26		

****** Out of four hours, 2 hours theory shall be taught to entire class and 2 hours practical in batches

Examination Scheme for Semester V

	Course Name	Examination Scheme												
		Theory											-	
Course Code		External (UA)		Internal (CA)		Term Work		Practical		Oral		Pract./Oral		Total
		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC501	Power System - II	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC502	Electrical Machines - III	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC503	Control System - I	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC504	Power Electronics	80	32	20	8	-	-	-	-	-	-	-	-	100
EEDLO 501X	Department Level Optional Course-I	80	32	20	8	25	10	-	-	-	-	-	-	125
EEL501	Business Communication and Ethics	-	-	-	-	50	20	-	-	-	-	-	-	50
EEL502	Control System Lab	-	-	-	-	25	10	-	-	25	10	-	-	50
EEL503	Electrical Machines Lab - III	-	-	-	-	25	10	-	-	-	-	25	10	50
EEL504	Power Electronics Lab	-	-	-	-	25	10	-	-	-	-	25	10	50
	Total	400	-	100	-	175	-	-	-	25	-	50	-	750
Program Structure for TE Electrical Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester VI

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EEC601	Protection and Switchgear Engineering	3	-	-	3	-	-	3
EEC602	Electrical Machines - IV	4	-	-	4	-	-	4
EEC603	Signal processing	3	-	1	3	-	1	4
EEC604	Microcontroller and its Applications	4	-	-	4	-	-	4
EEC605	Control System - II	4	-	-	4	-	-	4
EEDLO602X	Department Level Optional Course-II	3	-	1	3	-	1	4
EEL601	Electrical Protection Lab	-	2	-	-	1	-	1
EEL602	Electrical Machines Lab - IV	-	2	-	-	1	-	1
EEL603	Microcontroller Lab	-	2	-	-	1	-	1
EEL604	Simulation Lab – II	-	2	-	-	1	-	1
Total		21	8	2	21	4	2	27

Examination Scheme for Semester VI

		Examination Scheme												
		Theory				Practical								
Course	Course Name	External (UA)		Internal (CA)				Term Work		Oral		Pract./Oral		Total
Code		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC601	Protection and Switchgear Engineering	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC602	Electrical Machines - IV	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC603	Signal processing	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC604	Microcontroller and its Applications	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC605	Control System - II	80	32	20	8	-	-	-	-	-	-	-	-	100
EEDLO602 X	Department Level Optional Course-II	80	32	20	8	25	10	-	-	-	-	-	-	125
EEL601	Electrical Protection Lab	-	-	-	-	25	10	-	-	25	10	-	-	50
EEL602	Electrical Machines Lab - IV	-	-	-	-	25	10	-	-	-	-	25	10	50
EEL603	Microcontroller Lab	-	-	-	-	25	10	-	-	-	-	25	10	50
EEL604	Simulation Lab – II	-	-	-	-	25	10	-	-	25	10	_	-	50
Total		480	-	120	-	150	-	-	-	50	-	50	-	850

List of Department Level Optional Courses

Course Code	Department Level Optional Course - I
EEDLO5011	Communication Engineering
EEDLO5012	Renewable Energy and Energy Storage
EEDLO5013	Utilization of Electrical Energy

Course Code	Department Level Optional Course - II
EEDLO6021	Digital Communication Engineering
EEDLO6022	Micro-grid
EEDLO6023	Advanced Power Electronics

University of Mumbai							
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
		Theory	Tutorial	Theory	Tutorial	Total	
EEC501	Power System-II (abbreviated as PS-II)	4	1	4	1	5	

Course		Examination Scheme							
	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
code		Test 1	Test 0	A	Sem.	Duration	Work	Total	
			Test 2	Avg.	Exam	(Hrs.)			
EEC501	Power System –II	20	20	20	80	03	25	125	

Course	• To impart knowledge on transmission line operation during fault.					
Objectives	• To study power system transients and insulation co-ordination.					
	Student will be able					
	• To understand different kind of faults on transmission line.					
Course	• To analyse symmetrical fault					
Outcomos	• To analyse symmetrical components and unsymmetrical faults.					
Outcomes	• To illustrate and analyse power system transients					
	• To understand insulation co-ordination in power system.					
	• To understand and analyse corona on transmission line.					

Module	Contents	Hours
1	Symmetrical Fault Analysis:	14
	Introduction to synchronous machine, basic construction, operation and	
	equivalent circuit diagram, short circuit of synchronous machine: no	
	load and loaded machine, transient on a transmission line, selection of	
	Circuit breaker, short circuit MVA, algorithm for SC studies, Z Bus	
	formulation, symmetrical fault analysis using Z bus (numerical on Z	
	bus formulation up to 3x3 matrix).	
2	Symmetrical Components:	07
	Introduction, Symmetrical component transformation, phase shift in	
	star-delta transformers, sequence impedances and sequence network of	
	transmission line, synchronous machine and transformer, power	
	invariance, construction of sequence network of a power system.	
3	Unsymmetrical Fault Analysis:	07
	Types of unsymmetrical faults, Analysis of shunt type unsymmetrical	
	faults: single line to ground (SLG) fault, line to line (L-L) fault, double	
	line to ground (LLG) fault, bus impedance matrix method for analysis of	
	shunt type unsymmetrical faults. Analysis of series type unsymmetrical	
	faults: one open conductor faults, two open conductor fault.	
4	Power System Transients:	12
	Review of transients in simple circuits, recovery transient due to	
	removal of short circuit, arcing grounds, capacitance switching, current	

	chopping phenomenon.	
	Travelling waves on transmission lines, wave equation, reflection and	
	refraction of waves, typical cases of line terminations, attenuation,	
	Bewely lattice diagram.	
	Lightning phenomenon, mechanism of Lightning stroke, shape of Lightning voltage wave, over voltages due to Lightning, Lightning protection problem, significance of tower footing resistance in relation to Lightning, insulator flashover and withstand voltages, protection against surges, surge arresters, surge capacitor, surge reactor and surge absorber, Lightning arrestors and protective characteristics, dynamic	
	voltage rise and arrester rating.	
5	Insulation Coordination:	03
	Volt time curve, basic approach to insulation co-ordination in power	
	system, over voltage protection, ground wires, insulation coordination	
	based on lightning, surge protection of rotating machines and	
	transformers.	
6	Corona:	05
	Phenomenon of corona, Disruptive critical voltage, Visual critical	
	voltage, corona loss, factors affecting corona loss, Radio interference	
	due to corona, practical considerations of corona loss, corona in bundled	
	conductor lines, corona ring, corona pulses- their generation and	
	properties in EHV lines, charge voltage (q-v) diagram and corona loss.	

Text Books:

- 1. Wadhwa C.L. *Electrical power system*, New Age International,4th edition,2005
- 2. HadiSaadat, Power System Analysis, TMH publications, 2002
- 3. D. P. Kothari, I. J. Nagrath, Modern *Power System Analysis*,McGraw Hill,3rd edition,2006
- 4. B.R. Gupta, *Power System Analysis And Design*, S.Chand,4th edition,2007
- 5. Begamudre R.D. "Extra High Voltage AC Transmission Engineering", New Age International, 2nd edition
- 6. Soni M.L., Bhatanagar U.S, Gupta P.V, A *course in electrical power*, DhnapatRai sons
- 7. Timothy J.E.Miller, "Reactive Power Control in Electric Systems" Wiley India Pvt Ltd. 2010.
- 8. J.B.Gupta, "Course in power system" kataria Publication

Reference Books:

- 1. Stevenson, Modern power system analysis, TMH publication
- 2. TuranGonen, Modern power system analysis, Wiley, 1988
- 3. Mehta V.K., *Principle of power system*, S Chand,4th edition,2005.
- 4. Arthur R. Bergen, Vijay Vittal, "Power System Analysis", Pearson Publication, Second Edition.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
		Theory	Tutorial	Theory	Tutorial	Total	
EEC502	Electrical Machines -III (abbreviated as EMC- III)	4	-	4	-	4	

	Course Name	Examination Scheme								
Course										
Course		Interna	al Assess	ment	End	Exam	Term	Total		
coue		Tost 1	Tost 2	Ava	Sem.	Duration	Work	Totai		
		Test I	Test 2	Avg.	Exam	(Hrs.)				
EEC502	Electrical Machines –III	20	20	20	80	03	-	100		

Course	• To impart knowledge on performance and operation of an induction						
Objectives	motor.						
	• To study design aspects of an induction motor.						
	Student will be able						
	• To illustrate the working principle of three phase induction motor						
	• To analyse and evaluate performance of three phase induction motors						
Course	under various operating conditions						
Outcomos	• To illustrate various speed control and starting methods of three phase						
Outcomes	induction motor.						
	• To illustrate the working principle of single phase induction motor						
	• To analyse the performance of single phase induction motor.						
	To design three phase induction motor						

Module	Contents	Hours
1	Three Phase Induction Motors: Introduction, Construction, Principle	12
	of operation, Rotor emf & frequency, Current and Power, Power	
	stages, phasor diagram, Analysis of Equivalent circuit, Torque-speed	
	characteristics in braking, motoring and generating regions. Effect of	
	voltage and frequency variations on Induction motor performance,	
	Losses and efficiency, No load and block rotor test, Circle diagram,	
	Applications of 3Φ IM, Relevant standards	
2	Three Phase Induction Motors: Speed Control and Starting: Speed	06
	control methods including V/f method (excluding Slip power recovery	
	scheme), Starting methods, High torque motors, Cogging and crawling.	
3	Single phase Induction Motor: Introduction, Principle of operation,	04
	Double field revolving theory, Equivalent circuit of single phase	
	induction motor, Determination of equivalent circuit parameters from	
	no load and blocked rotor test.	
4	Types of Single phase Induction Motor & its Applications: Staring	04
	methods, Split phase starting- Resistance spilt phase, capacitor split	
	phase, capacitor start and run, shaded pole starting, Reluctance starting.	
	Applications.	
5	Design of Three phase Induction motors: Output equation, Choice of	12

	specific electric and magnetic loadings, Standard frames, Main	
	dimensions, Design of stator and rotor windings, Stator and rotor	
	slots, Design of stator core, air gap, Design of squirrel cage rotor, end	
	rings, Design of wound rotor.	
6	Performance Measurement of Three Phase Induction Motors:	10
	Calculation of leakage reactance for parallel sided slot, Carter"s	
	coefficients, Concept of B ₆₀ , Calculation of No load current, Short	
	circuit current, Dispersion coefficient. Relevant standards	

Text Books:

- 1. Bimbhra P.S., Electric Machinery, Khanna Publisher,
- 2. Bimbhra P.S., Generalized Machine Theory, Khanna Publisher,
- 3. V. K. Mehta, Principles of Electrical Machines, S Chand Publication
- 4. A.K. Sawhney, "Electrical Machine Design", Dhanpat Rai & Co
- 5. M.V.Deshpande, "Design and Testing of Electrical Machines", PHI Learning

Reference Books:

1.M.G. Say, Performance and design of alternating current machines, CBS Pub.

- 2. Ashfaq Husain, Electric Machines, Dhanpat Rai and co. publications
- 3.A.E. Fitzgerald, Kingsly, Stephen., Electric Machinery, Tata McGraw Hill

4.K.G. Upadhyay, "Design of Electrical Machines", New age publication

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
Code		Theory	Tutorial	Theory	Tutorial	Total	
EEC503	Control System -I (abbreviated as CS-I)	4	-	4	-	4	

		Examination Scheme						
Course	Course Name							
code		Internal Assessment			End	Exam	Term	Total
coue		Test 1	Test 2	Aug	Sem.	Duration	Work	Total
		Test I	Test Z	Avg.	Exam	(Hrs.)		
EEC503	Control System –I	20	20	20	80	03	-	100

Course	• To impart knowledge on control system and modeling of system and its		
Objectives	analysis.		
	Student will be able		
Course Outcomes	• To model electrical and electromechanical system using transfer function.		
	 To Illustrate methodology for simplification of system To model and analyse given system in state space 		
	 To analyse steady state condition of given system 		
	• To analyse the transient and stability conditions of physical system		

Module	Contents	Hours
1	Introduction to control system	02
	Introduction, open loop and closed loop control system with examples,	
	brief idea of multi variable control system.	
2	Mathematical Model of Physical System	10
	Transfer function of electrical, mechanical (translational and rotational)	
	and electro mechanical systems. Transfer function model of AC & DC	
	servomotor, potentiometer & tacho-generator. Block diagram reduction	
	technique and signal flow graph, Mason's rule, Signal flow graph of	
	electrical network. Conversion of BDR to SFGand vice versa.	
3	Time domain Analysis	10
	Time response analysis of first and second order systems, Under	
	damped second order system with step input. System response with	
	additional poles and zeros. Steady state error for unity feedback	
	systems. Static error constants and system type. Concept of stability,	
	absolute and relative stability using Routh Hurwitz criteria,	
4	State Variable Analysis	10
	Introduction to state variable, General state space representation, State	
	space representation of Electrical and Mechanical systems. Conversion	
	between state space and transfer function. Alternative representations	
	in state space: (Phase variable, canonical, parallel & cascade).	
	Similarity transformations, diagonalizing a system matrix. Laplace	
	Transform solution of state equation, stability in state space	
5	Root locus techniques	05
	Definition and properties of root locus, rules for plotting root locus,	

	stability analysis using root locus, Transient response design via gain	
	adjustment.	
6	Frequency Domain Analysis	11
	Polar plots, Bode plot, stability in frequency domain, Nyquist plots.	
	Nyquist stability criterion. Gain margin and phase margin via Nyquist	
	diagram and Bode plots. Relationship between Closed loop transient,	
	Closed and open loop frequency responses. Steady state error	
	characteristics from frequency responses.	

Text Books:

- 1. Control system engineering by Norman Nise 2nd to latest edition
- 2. Control System engineering by Nagrath and Gopal, 5th to latest edition , Wiley Eastern
- 3. Modern control system engineering by K. Ogata, printice Hal
- 4. Modern control Systems, Twelfth edition, by Richard C Dorf, Robert H Bishop, Pearson.

Reference Books:

- 1. Linear Control system Analysis and design with MATLAB, by J.J. Azzo, C. H. Houpis, S.N. Sheldon, Marcel Dekkar, ISBN 0824740386
- 2. Feedback control of Dynamic System, G.F. Franklin, Pearson higher education, ISBN 0130980412
- 3. Control System Engineering, Shivanagraju s. Devi L., New age International latest edition .
- 4. Control Systems Technology, Curtis Johnson, Heidar Malki, Pearson
- 5. Control Systems Engineering, S. K. Bhattacharya, Pearson.
- 6. Control Systems, Theory and applications, Smarajit Ghosh, Pearson

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
Code		Theory	Tutorial	Theory	Tutorial	Total	
EEC504	Power Electronics (abbreviated as PE)	4	-	4	-	4	

		Examination Scheme						
Course	Course Name							
		Internal Assessment			End	Exam	Term	Total
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Total
		Test I	Test Z	Avg.	Exam	(Hrs.)		
EEC504	Power Electronics	20	20	02	80	03	-	100

Course Objectives	 To impart knowledge about various power semiconductor devices related to its characteristics, ratings, protection and to select semiconductor devices for various applications. To introduce different methods of power conversion such as ac to dc, dc to dc, dc to ac the underlying principles of converter operation and hence to analyze different converter circuits for power conversion. To keep abreast with the latest technologies and research going on in different areas related to power electronics.
Course Outcomes	 Student will be able to Select and design power electronic converter topologies for a broad range of energy conversion applications. Analyse and simulate the performance of power electronic conversion systems. Analyse various single phase and three phase power converter circuits and understand their applications. Apply the basic concepts of power electronics to design the circuits in the fields of AC and DC drives, power generation and transmission and energy conversion, industrial applications. Identify and describe various auxiliary circuits and requirements in power electronics applications such as Gate driver circuit, and snubber circuits along with electrical isolation and heat sinks

Module	Contents	Hours						
1	Thyristors: Basic operation of silicon controlled rectifier, two	04						
	transistor analogy, Static and Dynamic characteristics, Gate							
	characteristics, Firing circuits, Commutation circuits, Protection circuit							
	of SCR, Basic operation and characteristic of Triac, GTO, Diac.							
2	Power semiconductor devices: Basic operation and characteristics of	12						
	power diodes, power BJTs, power MOSFETs, IGBTs, Silicon Carbide							
	(SiC)and GaN devices, Safe Operation Area (SOA) for each devices.							
	Comparison of devices, selection of devices for various applications,							
	conduction and switching losses; Gate Drive Circuitry for Power							
	Converters and snubber circuits, heat sinks.							
3	Controlled Rectifiers: Single phase half wave rectifiers, full wave	08						
	rectifiers (mid-point and bridge configuration) for R and R-L load,							

	freewheel diode, harmonic analysis of input current and input power factor for single phase fully controlled rectifier, effect of source inductance (concept only), single phase dual converter, Three phase semi converter and full converter with R load, Applications, Numerical for calculation of output voltage, single phase PWM rectifier, basic working principle and applications.	
4	Inverter: Principle of operation, Performance parameters, Single phase voltage source bridge Inverters, Three phase VSI (120° and 180° conduction mode), control of inverter output voltage , PWM techniques-Single PWM, Multiple PWM, Sinusoidal PWM, Introduction to Space vector modulation, Current source inverters, comparison of VSI and CSI, Applications.	06
5	DC to DC Converter : Basic principle of dc to dc conversion, switching mode regulators – Buck, Boost, Buck-Boost, Cuk regulators, bidirectional dc to dc converters, all with resistive load and only CCM mode, Applications: Power Factor Correction Circuits, LED lamp driver, Numerical included.	08
6	AC voltage controllers: On-Off and phase control, Single phase AC voltage controllers with R and RL loads. Cyclo converters, Matrix converter: Basic working principle.	10

Text Books:

- 1. "Power Electronics" M.H.Rashid, Prentice-Hall of India
- 2. "Power Electronics", Ned Mohan, Undeland, Robbins, John Wiley Publication
- 3. "Power Electronics", P.C Sen, Tata McGrawhill

4. "Power Electronics: Devices, Circuits and Matlab Simulations" by Alok Jain, Penram International

- 5. "Power Electronics", V.R Moorthi, Oxford University press
- 6. "Thyristors & their applications", Ramamurthy
- 7. "Power Electronics", M.D Singh and Khanchandani, Tata McGrawhill
- 8. "Silicon Carbide Power Devices" B. Jayant Baliga

Reference Books:

- 1. "Power Electronics", Landers, McGraw Hill
- 2. "Power Electronics", P.S Bhimbra, Khanna Publishers
- 3. "Elements of power electronics" Philip T Krein, Oxford University Press
- 4. "Power Electronics for Technology", Ashfaq Ahmed, Pearson
- 5. "Power Electronics", Joseph Vithayathil, Tata McGrawhill

6. "Silicon Carbide, Volume 2: Power Devices and Sensors," Peter Friedrichs, Tsunenobu Kimoto, Lothar Ley and Gerhard Pensl, Wiley Publications

7. "Power Electronics Converters and Regulators," Dokić, Branko L. and Blanuša, Branko

Website Reference:

1. http://nptel.iitm.ac.in: 'Power Electronics' web-course

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEDLO 5011	Communication Engineering (abbreviated as CE)	3	1	3	1	4		

		Examination Scheme							
Course	Course Name	Theory							
code		Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
EEDLO 5011	Communication Engineering	20	20	20	80	03	25	125	

Course Objectives	 To impart knowledge on various modulation techniques in communication engineering. To study different sampling techniques used in communication engineering.
Course Outcomes	 Student will be able To understand basic communication system and its components. To illustrate and analyse amplitude modulation and demodulation techniques. To illustrate and analyse phase modulation and demodulation techniques. To illustrate and analyse frequency modulation and demodulation techniques. To illustrate and analyse pulse modulation and demodulation techniques. To illustrate and analyse pulse modulation and demodulation techniques. To illustrate and analyse pulse modulation and demodulation techniques. To illustrate and analyse pulse modulation and demodulation techniques.

Module	Contents	Hours					
1	Basics of Communication System	04					
	Types of signals, Block diagram, electromagnetic spectrum, signal						
	bandwidth and power, types of communication channels, types of noise,						
	signal to noise ratio, noise figure, and noise temperature						
2	Amplitude Modulation and Demodulation	08					
	Basic concept, signal representation, need for modulation, Spectrum,						
	waveforms, modulation index, bandwidth, voltage distribution, and						
	power calculation						
	DSBFC : Principles, modulating circuits, low level and high level						
	transmitters						
	DSB suppressed carrier:- Multiplier modulator, nonlinear modulator,						
	and switching Modulator,						
	Single Side Band (SSB):-Principle, filter method, phase shift method						
	and third method, independent sideband (ISB) and Vestigial Side Band						
	(VSB) principles and transmitters						
	Amplitude demodulation: Diode detector, practical diode detector, and						
	square law Detector.						
3	Angle Modulation and Demodulation	08					
	Frequency Modulation (FM): Basic concept, mathematical analysis,						

	frequency spectrum of FM wave, sensitivity, phase deviation and	
	modulation index, frequency deviation and percent modulated waves,	
	bandwidth requirement of angle modulated waves, deviation ratio,	
	narrow band FM, and wide band FM. Varactor diode modulator, FET	
	reactance modulator. Direct FM transmitter, indirect FM Transmitter,	
	noise triangle in FM, pre-emphasis and de-emphasis.	
	Phase Modulation (PM): Principle and working of transistor direct PM	
	modulator, relationship and comparison between FM and PM.	
	FM demodulation: Balance slope detector, Foster-Seely discriminator,	
	ratio detector, comparison between FM demodulators, comparison	
	between AM, FM and PM. Applications of FM and PM	
4	Radio Receivers	06
	TRF, Super-heterodyne receiver, receiver parameters, and choice of IF.	
	AM receiver circuits and analysis, simple AGC, delayed AGC, forward	
	AGC, and communication receiver, FM receiver circuits, comparison	
	with AM receiver	
5	Pulse Modulation and Demodulation	06
	PAM, PWM, PPM waveform generation and detection, principle,	
	generation and detection of delta modulation and adaptive delta	
	modulation. Applications of pulse communication	
6	Sampling Techniques	04
	Theorem for low pass and band pass signals, proof with spectrum,	
	Nyquist criteria, sampling techniques, aliasing error and aperture effect	

Text Books:

- 1. Tomasi W., "Advanced Electronics Communication systems", PGI, 4th Edition1998
- Taub & Schiling, "Principles of Communication Systems", McGraw Hill, 2nd Ed. 1987
- 3. John C. proakis, "Digital Communication", McGraw Hill International, 1995
- 4. Haykin S, John Wiley & Sons, "Digital Communication", 3rd Ed. 1995

Reference Books:

- 1. Lathi B.P., "Modern Digital and Analog Communication System, Oxford University Press, 3rd Edition 1998
- Dennis Roddy and John Coolen, "Electronic Communications", Prentice Hall of India, 3rd Ed. 1992

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials	:15 marks
Assignments	:05 marks
Attendance (Theory and Tutorial)	:05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEDLO 5012	Renewable Energy and Energy Storage (abbreviated as REES)	3	1	3	1	4		

		Examination Scheme							
Course	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
EEDLO 5012	Renewable Energy and Energy Storage	20	20	20	80	03	25	125	

Course	• To introduce the new paradigm of power generation in the form of renewable energy and the various means used for power processing and optimization.
Objectives	• To relate and study the various energy storage technology and their significance in the context of renewable energy based applications.
	Student will be able to
Course Outcomes	 Identify and describe the issues related to use of fossil fuels and to recognize means of mitigation through adaption of renewable energy (RE). Identify and analyze the process of power generation through solar thermal and solar photovoltaic technologies. Identify and describe the various components and types of Wind Energy system Fuel cell technology, tidal, wave, and biomass systems. Identify and describe the importance of various forms of energy storage (ES) in new power generation scenario based on renewable energy. Analyze, formulate and propose the power sharing mechanisms and to evaluate the fault scenarios in hybrid RE and ES sources. Recognize the need to adapt and engage in operations RE/ES related activities for sustainable future.

Module	Contents	Hours
1	Introduction- World's and India's production and reserves of	03
	commercial energy sources, energy alternatives, review of conventional	
	and non conventional energy sources. Statistic of net potential and	
	current generation status of different energy alternatives. Distributed	
	generation, Future trends in power generation and distribution.	
2	Solar Energy- Solar Thermal applications-Review of solar thermal	12
	applications-solar thermal conversion devices and storage applications.	
	Solar Photovoltaic- solar cell: characteristics, losses, model of a solar	
	cell, emerging solar cell technologies; Solar PV modules, mismatch in	
	module , hot spots, bypass diode; PV module: I-V and power curve,	
	effect of variation in temperature and solar radiations; MPPT, types,	
	different algorithms for electrical MPPT. distributed MPPT, MPPT	
	converters.	
	Types of PV systems: standalone, grid connected systems; BOS of PV	

	system, Battery charge controllers, Power Conditioning Unit, Solar PV	
	Micro-inverters	
	Solar Plant design: mounting of PV panels supporting structures,	
	Calculation and Design methodology of standalone PV system and grid	
	connected system	
	Review of regulatory standards for solar PV installations, net-metering.	
3	Wind Energy Review of wind energy system and its components, types	04
	of wind turbines, characteristics; Power generation and control in wind	01
	energy systems, performance calculations of wind energy systems.	
	Topologies of WES, WES with rectifier / inverter system, Power	
	Converters for Doubly Fed Induction Generators (DFIG) in Wind	
	Turbines.	
4	Fuel Cell- Review of fuel cells and their principle of operation, Review	03
	of types of fuel cell and their performance comparison. Topologies of	
	fuel cell power systems, applications.	
5	Other Sources- Review of other nonconventional sources, their features	04
	and applications; Biomass, Tidal, Ocean Thermal Electric Conversion,	
	geothermal, and Micro-hydro.	
6	Energy Storage	10
	Forms of energy storage, importance of storage system in new power	
	generation scenario; Types, characteristics and performance evaluation	
	of: batteries, ultra-capacitors, flywheels, SME, pumped hydro storage	
	system; Applications of Energy storage in distributed generation, smart	
	grid systems, Electric and Hybrid electric vehicles. Hybrid power	
	system based on renewable energy and energy storage.	

Reference Books:

- 1. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable Energy in Electric Power Systems", Wiley
- 2. Green M.A "Solar Cells": Operating Principles, technology and System Applications, Prentice Hall Inc, Englewood Cliffs N.J, U.S.A, 1982
- 3. James Larminie, Andrew Dicles "Fuel Cell Systems Explained," Wiley publication
- 4. Chetan Singh Solanki, Solar Photo Voltaics, PHI Learning Pvt Ltd., New Delhi, 2009
- 5. Hashem Nehrir and Caisheng Wang, Modeling *and control of fuel cells: Distributed Generation Applications*, IEEE Press, 2009
- 6. J.F. Manwell and J.G. McGowan, *Wind Energy Explained, theory design and applications*, Wiley publication
- 7. Leo J.M.J. Blomen and Michael N. Mugerwa, "Fuel Cell System", New York, Plenum Press, 1993.
- 8. D. D. Hall and R. P. Grover, *Biomass Regenerable Energy*, John Wiley, New York, 1987.
- 9. Felix A. Farret and M. Godoy Simoes, *Integration of Alternative Sources of Energy*, 2006, John Wiley and Sons.
- 10. Robert Huggins, Energy Storage, Springer, 2010
- 11. M. Ehsani, Y. Gao, and Ali Emadi, *Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design*, Second Edition, CRC Press.

- 12. S. Chakraborty, M. G. Simões and W. E. Kramer, *Power Electronics for Renewable* and Distributed Energy System, Springer 2013
- 13. Ahmed Faheem Zobaa, *Energy storage Technologies and Applications*, InTech Publication 2013.
- 14. N. Femia G. Petrone, G. Spagnuolo and M. Vitelli, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems, CRC Press, 2013

Website Reference:

- 1. <u>http://nptel.iitm.ac.in</u>: 'Energy Resources and Technology' web-course
- 2. <u>http://nptel.iitm.ac.in</u>: 'Non conventional Energy Systems' web-course

Other References Material

- 1. Heinrich Ha["]Berlin, Photovoltaics System Design And Practice, Wiley, 2012
- 2. Shin'ya Obara, Design of Renewable Energy Systems: Microgrid and Nature Grid Methods, Engineering Science Reference, 2014

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEDLO 5013	Utilization of Electrical Energy (abbreviated as UEE)	3	1	3	1	4		

Course code		Examination Scheme							
	Course Name								
		Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
EEDLO 5013	Utilization of Electrical Energy	20	20	20	80	03	25	125	

Course	• To impart the knowledge on different types of drives used in electric
Objectives	traction.
Objectives	• To impart the basic knowledge of some domestic electric appliances.
	Students will be able
	• To understand and analyse the power factor for improving the quality of
	supply.
Course	• To analyse different type of traction systems.
Outcomos	• To understand modern tools to control electric traction motors.
Outcomes	• To understand concept of electrical heating and welding and their
	application.
	• To understand different methods of cooling systems used in domestic
	electric appliances.

Module	Contents	Hours
1	Power Factor Power factor, disadvantages of low power factor, Causes of low power factor, methods of power factor improvement, advantages of power factor improvement and economics of power factor improvement.	04
2	Electric Traction Requirement of an ideal traction system. Traction system- Non electric traction system, electric traction system, diesel traction. System of Track electrification- DC system, single phase, three phase, composite system (Kando system), single phase AC to DC system. Different accessories for track electrification- overhead wire, conductor rail system, current collector- pantograph, catenary. Traction mechanics-Types of services, speed time curve, trapezoidal and quadrilateral speed time curves, power and energy output from driving axles, average and schedule speed (numerical), specific energy consumption, factors affecting specific energy consumption, dead weight, accelerating weight and adhesive weight.	12
3	Electric Traction Motors and Controls Desirable characteristics of traction motors, suitability of DC series motors, AC series motors, three phase induction motors and linear	10

	induction motor for traction. Control of Traction motors- Requirement,	1
	starting and speed control by using rheostat control, series parallel	l
	method, transition from series to parallel (shunt transition, bridge	l
	transition), thyristor control method, chopper control of motor in DC	1
	Traction System, PWM control of induction motor. Breaking-	1
	Requirement of breaking system, mechanical breaking, electrical	l
	breaking, rheostatic breaking, regenerative breaking. Substation-	1
	Location and distribution system, substation equipment, traction	l
	SCADA and railway signaling.	L
4	Electric Heating	03
	Classification of electric heating methods, Resistance heating- Direct	l
	resistance heating, indirect resistance heating, application, Arc heating-	l
	Direct arc heating, indirect arc heating, applications of arc heating,	l
	Induction heating. Core type induction furnaces- Ajax Wyatt furnace,	l
	coreless induction furnace, Application of induction heating. Dielectric	l
	heating- principle, choice of frequency for dielectric heating, application	1
	of dielectric heating. Eddy current heating principle and applications.	L
5	Electric Welding	03
	Electric welding- welding methods, electric arc welding, resistance types	l
	welding and application, modern welding techniques. Electric arc	l
	welding- Formation and characteristics of electric arc, effect of arc	1
	length, arc blow, Electrode used in arc welding, spot welding machine.	L
6	Other application of Electrical Energy	04
	Terminology, Refrigeration and Air conditioning, Refrigeration cycle,	l
	Vapour compression type, vapour absorption type, Electrical circuit of a	1
	Refrigerator, Room Air conditioner window type and split type.	1

Text Books:

- 1. Utilization of Electric Energy by J. B. Gupta, SK Kataria & Sons.
- 2. Utilization of Electric Energy by R. K. Rajput, Laxmi Publications (P) Ltd.
- 3. Generation, Distribution and Utilization of Electric Energy by C.L.Wadhwa, Wiley Eastern Ltd.
- 4. I. Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003

Reference Books:

- 1. Art, Science of . Utilization of Electric Energy by H. Pratap, Dhanpat Rai & Sons
- 2. Electric Traction by H. Pratap, Dhanpat Rai & Sons
- 3. Designing with light- A Lighting Handbook by Anil Valia, Lighting System
- 4. Generation and Utilization of Electric Energy by S. Sivanagaraju, Pearson Eduction India
- 5. M. Ehsani, Y. Gao, S.E.Gay and Ali Emadi, *Modern Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press.* 2005
- 6. "Lamps and lighting" by M.A.Cayless, J.R.Coaton and A.M.Marsden

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teachir (Conta	ng Scheme ct Hours)	Credits Assigned				
		Theory	Practical	Theory	Practical	Total		
EEL501	Business Communication and Ethics (abbreviated as BCE)	-	4**	-	2	2		

Course Code		Examination Scheme							
	Course Name	Theory				Practical			
		Internal Assessment			End	Torm	Pract.	Pract.	Total
		Test	Test	Avg.	Sem.	Work	and	Oral	
		1	2		Exam		Oral		
	Business								
EEL501	Communication	-	-	-	-	50	-	-	50
	and Ethics								

Course Objectives	 To inculcate professional and ethical attitude at the workplace To enhance effective communication and interpersonal skills To build multidisciplinary approach towards all life tasks To hone analytical and logical skills for problem-solving
Course Outcomes	 The students will be able to Design a technical document using precise language, suitable vocabulary and apt style. Develop the life skills/ interpersonal skills to progress professionally by building stronger relationships. Demonstrate awareness of contemporary issues knowledge of professional and ethical responsibilities. Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP. Deliver formal presentations effectively implementing the verbal and non-verbal skills.

Module	Contents	Hours
01	Report Writing	05
1.1	Objectives of Report Writing	
1.2	Language and Style in a report	
1.3	Types : Informative and Interpretative (Analytical, Survey and Feasibility)and Formats of reports (Memo, Letter, Short and Long Report)	
02	Technical Writing	03
2.1	Technical Paper Writing (IEEE Format)	

2.2	Proposal Writing	
03	Introduction to Interpersonal Skills	08
3.1	Emotional Intelligence	
3.2	Leadership and Motivation	
3.3	Team Building	
3.4	Assertiveness	
3.5	Conflict Resolution and Negotiation Skills	
3.6	Time Management	
3.7	Decision Making	
04	Meetings and Documentation	02
4.1	Strategies for conducting effective meetings	
4.2	Notice, Agenda and Minutes of a meeting	
4.3	Business meeting etiquettes	
05	Introduction to Corporate Ethics	02
5.1	Professional and work ethics (responsible use of social media -	
	Facebook, WA, Twitter etc.)	
5.2	Introduction to Intellectual Property Rights	_
5.2	Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and	-
5.2	Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions)	-
5.2 5.4 06	 Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions) Employment Skills 	06
5.2 5.4 06 6.1	 Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions) Employment Skills Group Discussion 	06
5.2 5.4 06 6.1 6.2	Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions) Employment Skills Group Discussion Resume Writing	06
5.2 5.4 06 6.1 6.2 6.3	Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions) Employment Skills Group Discussion Resume Writing Interview Skills	06
5.2 5.4 06 6.1 6.2 6.3 6.4	Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions) Employment Skills Group Discussion Resume Writing Interview Skills Presentation Skills	06

- 1. Fred Luthans, "Organizational Behavior", McGraw Hill, edition
- Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
 Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill

4. Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, 12th edition

- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. Sharma R.C. and Krishna Mohan, "Business Correspondence and Report Writing", Tata McGraw-Hill Education

7. Ghosh, B. N., "*Managing Soft Skills for Personality Development*", Tata McGraw Hill. Lehman,

8. Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition

9. Bell, Smith, "Management Communication" Wiley India Edition, 3rd edition.

10. Dr. Alex, K., "Soft Skills", S Chand and Company

11Subramaniam, R., "Professional Ethics" Oxford University Press.

12. Robbins Stephens P., "Organizational Behavior", Pearson Education

13. <u>https://grad.ucla.edu/asis/agep/advsopstem.pdf</u>

Suggested List of Assignments:

- 1. Report Writing (Theory)
- 2. Technical Proposal
- 3. Technical Paper Writing (Paraphrasing a published IEEE Technical Paper)
- 4. Interpersonal Skills (Group activities and Role plays)
- 5. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 6. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 7. Corporate ethics (Case studies, Role plays)
- 8. Writing Resume and Statement of Purpose

Term work:

Term work shall consist of all assignments from the list. The distribution of marks for term work shall be as follows:

Book Report:	10 Marks
Assignments:	10 Marks
Project Report Presentation:	15 Marks
Group Discussion:	10 Marks
Attendance:	05 Marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

University of Mumbai								
Course Code	Course Name	Teachin (Conta	ng Scheme ct Hours)	Credits Assigned				
		Theory	Practical	Theory	Practical	Total		
EEL502	Control System Lab (abbreviated as CS Lab)	-	2	-	1	1		

Course Code		Examination Scheme							
	Course Name	Theory				Practical			
		Internal Assessment			End	Torm	Pract.	Pract.	Total
		Test 1 T	Test 2	Avg.	Sem.	Work	and	Oral	
			1050 2		Exam		Oral		
EEI 502	Control					25		25	50
EELJ02	System Lab	-	-	-	-	23	-	23	50

Course	• To study basic concepts of control system
Objectives	• To impart knowledge on various components of control systems.
Course Outcomes	 Students will be able To illustrate the functioning of various components of control system. To analyse the response of physical system for various inputs. To analyse the stability of the system using time domain and frequency domain techniques by simulation.

Syllabus: Same as that of Course EEC503 Control System – I

Suggested List of Laboratory Experiment:

(A) Laboratory Experiments

- 1. Study of AC Servomotor
- 2. Study of DC Servomotor
- 3. Study of potentiometer as an error detector
- 4. Study of Synchros as an error detector
- 5. Study of AC position control system
- 6. Study of DC position control system
- 7. Obtain time response of first order to step ramp and parabolic input
- 8. Obtain time response of second order system to step input.

(B) Simulation Based Experiments

- 1. Draw root locus and hence obtain steady state stability of control system
- 2. Draw Bode plot and hence obtain steady state stability of control system
- 3. Draw Nyquist plot and hence obtain steady state stability of control system

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum eight experiments. The distribution of marks shall be as follows:

Experiments Performance	:10 marks
Journal	:10 marks

Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.

University of Mumbai							
Course Code	Course Name	Teachin (Conta	ng Scheme ct Hours)	Credits Assigned			
		Theory	Practical	Theory	Practical	Total	
EEL503	Electrical Machines Lab - III (abbreviated as EMC Lab -III)	-	2	-	1	1	

		Examination Scheme							
Course	Course Name	Theory				Practical			
Code		Internal Assessment Er			End	Torm	Pract.		Total
Code		Test 1 T	Test 2	Avg.	Sem.	Work	and	Oral	
			Test 2		Exam	WOIK	Oral		
	Electrical								
EEL503	Machines Lab	-	-	-	-	25	25	-	50
	–III								

Course	• To impart practical knowledge of single phase and three phase induction
Objectives	motor.
	Students will be able
	• To evaluate performance of single phase and three phase induction motor by carrying load test.
Course Outcomes	 To analyse performance of single phase and three phase induction motor by carrying no load and blocked rotor test. To illustrate the operation of various type of starters.
	• To illustrate different methods of speed control for three phase induction motor.

Syllabus: Same as that of Course EEC502 Electrical Machines - III

Suggested List of Laboratory Experiment:

- 1) Load Test on three phase sq. cage Induction Motor.
- 2) Load test on three phase slip ring induction motor.
- 3) No load and Blocked rotor test on three phase Induction Motor.
- 4) Performance analysis of three phase Induction Motor using Circle diagram.
- 5) Load Test on single phase Induction Motor.
- 6) No load and Blocked rotor test on single phase Induction Motor.
- 7) Study of different types of starters.
- 8) Speed control by v/f method.

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum six experiments, minimum two drawing sheets (full imperial size) or software based drawing of individual parts and the assembled views of three phase induction motor. Design should be based on the Indian Standard Specifications. The distribution of marks shall be as follows:

Experiments Performance	:10 marks
Journal	:10 marks
Attendance (Theory and Practical)	:05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai						
Course	Course Name	Teachin (Conta	ng Scheme ct Hours)	Credits Assigned		
Code		Theory	Practical	Theory	Practical	Total
EEL504	Power Electronics Lab (abbreviated as PE Lab)	-	2	-	1	1

		Examination Scheme							
Course	Course Name		Theory				Practical		
Code		Internal Assessment			End	Torm	Pract.		Total
Coue		Test 1 T	Test 2	Avg.	Sem.	Work	and	Oral	
			Test 2		Exam		Oral		
	Power								
EEL504	Electronics	-	-	-	-	25	25	-	50
	Lab								

Course Objectives	 To impart knowledge about various power semiconductor devices related to its characteristics, ratings, protection and to select semiconductor devices for various applications. To introduce different methods of power conversion such as ac to dc, dc to dc, dc to ac the underlying principles of converter operation and hence to analyse different converter circuits for power conversion. To keep abreast with the latest technologies and research going on in different areas related to power electronics.
Course Outcomes	 Student will be able to Draw V-I characteristics of power electronic devices. Simulate the performance of power electronic conversion systems. Analyse various single phase and three phase power converter circuits and understand their applications. Apply the basic concepts of power electronics to design the circuits in the fields of AC and DC drives, power generation and transmission and energy conversion, industrial applications. Identify and describe various auxiliary circuits and requirements in power electronics applications such as Gate driver circuit, and snubber circuits along with electrical isolation and heat sinks

Syllabus: Same as that of Course EEC504 Power Electronics

Suggested List of Laboratory Experiment:

(A) Hardware Based Experiments

- 1. V-I Characteristics of SCR
- 2. Firing Circuit of SCR
- 3. Single phase half /full controlled rectifier circuit
- 4. Three phase half /fully controlled rectifier circuit with R load
- 5. Triac Diac circuit based speed control of single phase motor
- 6. Gate Drive Circuit and snubber circuits (IGBT/MOSFET based)
- 7. Single phase Inverter (IGBT/MOSFET based)
- 8. Three phase Inverter (IGBT/MOSFET based)

- 9. Implementation of PWM techniques
- 10. Buck converter
- 11. Boost Converter /Buck-Boost
- 12. AC-AC converter

(B) Applications of Power Electronics Circuits Demonstration

- 13. Closed loop control of DC-DC converter
- 14. Power factor correction in converters
- 15. LED lamp intensity control
- 16. Solar PV based converter / inverter system

(C) Simulation

- 17. Three phase controlled rectifier including source inductance
- 18. PWM Rectifier
- 19. Three phase VSI (120° and 180° conduction mode)
- 20. Bidirectional DC-DC Converter
- 21. Buck Converter
- 22. AC voltage controllers: On-Off and phase control

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum six experiments and at least four simulations. The distribution of marks shall be as follows:

Experiments Performance :10 marks

Journal :10 marks

Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai							
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned			
		Theory	Tutorial	Theory	Tutorial	Total	
EEC601	Protection and Switchgear Engineering (abbreviated as PSE)	3	-	3	-	3	

		Examination Scheme							
Course									
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
	Protection and								
EEC601	Switchgear	20	20	20	80	03	-	100	
	Engineering								

Course	• To impart basic knowledge of power system protection, substation							
Objectives	equipment and protection schemes.							
	Students will be able							
	• To select the appropriate switching/protecting device for substations.							
	• To discriminate between the application of circuit breaker and fuses as a protective device.							
Course Outcomes	• To understand the basic concept of relay, types of relay and their applications in power system.							
	• To select the specific protection required for different components of power system according to the type of fault.							
	• To apply the specific protection provided for different types of transmission lines.							

Module	Contents	Hours
1	Substation Equipment and switching devices	03
	Substation Equipment:	
	Switchgear-Definition, Types, Location of switchgear in typical power system	
	Switching Devices:- Isolator & Earthing switch (Requirements &	
	definitions, types and construction, Pantograph Isolators, Ratings),	
	Contactors: Basic working principle, Terms & Definitions, contactors as	
	starters for motors, rated characteristics/ Utilization categories of	
	contactors,	
2	Circuit Breakers and Fuses:	09
	Circuit Breaker:	
	Arc initiation, arc quenching principles, Restriking voltage, RRRV,	
	Recovery voltage, Types of Circuit Breakers: MCB, MCCB, ELCB, air	
	circuit breakers, oil circuit breakers, SF6 circuit breakers, vacuum circuit	
	breakers (working principle, Construction, operating mechanisms,	
	ratings & applications), Mechanical life, Electrical life and testing of	
	circuit breakers.	
	HRC Fuses & their applications-Introduction, types of devices with	

	fuse, definitions, construction, fuse link of HRC fuse. Action of HRC	
	fuse, shape of fuse element, specification of a fuse link, characteristics	
	of fuse cut-off, classification & categories selection of fuse links fuse	
	for protection of motor discrimination fuse for protection of radial	
	lines/meshed feeders equipment incorporating fuses high voltage	
	current limiting fuses expulsion type high voltage fuses drop out fuse	
3	Introduction to Protective relaying: About protective relaying Shunt	09
5	& Series Faults causes and Effects of faults Importance of protective	07
	relaying Protective zones primary & Back-up protection Back-up	
	protection by time grading principle desirable qualities of protective	
	relaying some terms in protective relaying Distinction between relay	
	unit, protective scheme and Protective system. Actuating quantities,	
	Thermal Relays, Electromechanical relays and static relays, Power line	
	carrier channel, programmable relays, system security, role of engineers.	
	Electromagnetic relays - Introduction, basic connections of relay.	
	Auxiliary switch, sealing and auxiliary relays, measurement in relays,	
	Pick up, drop off. Attracted armature & induction disc relays. Thermal,	
	bimetal relays, Frequency relays, under/over voltage relays, DC relays,	
	All or nothing relays.	
	Different Principles of protection - Over current & earth fault (non-	
	directional & directional types), differential protection, distance	
	protection (Working Principle of Impedance relay, Causes and remedies	
	of Over reach-under reach, Reactance and Mho relay, Power swing	
	blocking relay).	
4	Protection Schemes Provided for major Apparatus:	06
	Generators - Stator side (Differential, Restricted Earth fault, protection	
	for 100% winding, Negative phase sequence, Reverse power, turn-turn	
	fault), Rotor side (Field suppression, field failure, Earth fault, turn to	
	turn fault)	
	Transformers-Differential protection for star delta Transformer,	
	Harmonic restraint relay, REF protection, Protection provided for	
	incipient faults (Gas actuated relay).	
	Induction motors - Protection of motor against over load, short circuit,	
	earth fault, single phasing, unbalance, locked rotor, phase reversal, under	
	voltage, winding temperature.	
5	Protection of Transmission Lines:	05
	Feeder protection - Time grading, current grading, combined time &	
	current grading protection provided for Radial, Ring Main, Parallel, T-	
	Feeder.	
	Bus Zone Protection - Differential protection provided for different	
	types of bus zones.	
	LV, MV, HV Transmission Lines - Protection provided by over current,	
	earth fault, Differential and Stepped distance protection.	
	EHV & UHV Transmission lines - Need for auto-rectosure schemes,	
	Carrier arded distance protection (Directional comparison method), Dower Line Carrier Current protection (Directional comparison method)	
E	Introduction to Statia & Numerical Delayer	0.4
O	Static Relays. Introduction Definition Advantages and Disadvantages	04
	Application of op-amps logic gates DSD in static/ digital Delays	
	Relays as comparators (Amplitude & phase) Distance relays as	
	relays as comparators (Amphitude de phase), Distance relays as	

comparators.	
Numerical Relays- Introduction, Block diagram of numerical relay,	
Signal sampling, Anti –Aliasing Filter, Introduction to the concept of	
Phase Measurement Unit	

Text Books:

- 1. Switchgear & Protection by Sunil.S.Rao, Khanna Publications
- 2. Power system Protection & Switchgear by Badriram Vishwakarma, TMH
- 3. Power System Protection And Switchgear by Bhuvanesh A O, Nirmal CN, Rashesh PM, Vijay HM, Mc Graw Hill

Reference Books:

- 1. Fundamentals of protection by Paithanker & Bhide.S.R, P.H.I
- 2. Static Relays by Madhava Rao, TMH

3. A text book on Power System Engineering by Soni, Gupta, Bhatnagar & Chakraborthi, Dhanpat Rai & Co

- 4. Protective Relaying by Lewis Blackburn, Thomas.J.Domin
- 5. Power System Protection by P.M.Anderson, Wiley Interscience

*6. A Web Course on Digital protection of power system by Prof. Dr. S.A.Soman, IIT Bombay.

*7. Modern Power System Protection – DivyeshOza, TMH Publication

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEC602	Electrical Machines -IV (abbreviated as EMC - IV)	4	-	4	-	4		

Course	Course Name	Examination Scheme						
		Theory						
		Internal Assessment			End	Exam	Term	Total
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Total
		Test I	1051 2	Avg.	Exam	(Hrs.)		
EEC602	Electrical Machines -IV	20	20	20	80	03	-	100

Course Objectives	 To impart knowledge of performance and operation of synchronous machine. To study working, control and applications of brushless motor.
Course Outcomes	 Students will be able To determine the performance parameters of synchronous machines graphically and analytically by conducting different test. To analyse the performance parameters of synchronous machines. To understand the concept of direct and quadrature axis parameters of synchronous machines. To understand and analyse the operation of synchronous motor. To analyse abc to dq0 transformation and steady state operation of synchronous machine. To understand the operation and analyse control of BLDC motors.

Module	Contents	Hours
1	Synchronous Generator: Construction, E.M.F. equation, Winding	12
	factors, Armature reaction, Phasor diagrams for cylindrical rotor	
	generator, Voltage regulation, No load (OC) and SC test, Voltage	
	regulation methods: EMF; MMF; ZPF; ASA; Saturated Synchronous	
	Reactance.	
2	Performance of Synchronous Generator: Power flow equations and	08
	maximum power conditions, Need for parallel operation and conditions,	
	Effect of variation of field current and prime mover input on parallel	
	operation, Concept of infinite bus, Effect of variation of field current on	
	alternator connected to infinite bus, Numericals on parallel operation	
3	Salient pole synchronous generator: Concept of direct and quadrature	05
	reactance, Blondel's two reaction theory, Phasor diagram of salient pole	
	machine, Power angle characteristics, Synchronising power and torque.	
4	Synchronous Motor: Principle of operation, Self starting methods,	12
	Phasor diagram, Load angle (δ), Power flow equations and maximum	
	power conditions, Effect of change in excitation and mechanical power	
	on performance of motor, V and Inverted V curves, Power factor	
	control, Hunting, Excitation and power circles, Measurement of X_d and	

	X _q by slip test, Starting against high torques				
5	Theory of Synchronous Machines: Ideal synchronous machine,	06			
	Transformation to direct and quadrature axis variables, basic machine				
	relations in dq0 variables, Steady state analysis.				
6	BLDC Motor: Classification, Construction, Electronic commutation,	05			
	Principal of operation, Microprocessor/DSP based control scheme of				
	BLDC motor (block diagram and flow chart), Sensor less control,				
	Comparison with DC motor, Applications.				

Text Books:

- 1. Bimbhra P.S., Electric Machinery, Khanna Publisher,
- 2. Bimbhra P.S., Generalized Machine Theory, Khanna Publisher,
- 3. V. K. Mehta, Principles of Electrical Machines, S Chand Publication
- 4. E.G.Janardanan, Special Electrical Machines, PHI Publisher, 2016.
- 5. K. Venkataratnam, Special Electrical Machines, University Press, 2016.

Reference Books:

- 1. Ashfaq Husain, Electric Machines, Dhanpat Rai and co. publications
- 2. A.E. Fitzgerald, Kingsly, Stephen., Electric Machinery, Tata McGraw Hill

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.
| University of Mumbai | | | | | | | | |
|----------------------|--|---------------------|----------------------|------------------|----------|-------|--|--|
| Course
Code | Course Name | Teaching
(Contac | g Scheme
t Hours) | Credits Assigned | | | | |
| | | Theory | Tutorial | Theory | Tutorial | Total | | |
| EEC603 | Signal Processing
(abbreviated as SP) | 3 | 1 | 3 | 1 | 4 | | |

Course		Examination Scheme							
	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
EEC603	Signal Processing	20	20	20	80	03	25	125	

Course Objectives	• To impart knowledge on continuous and discrete time signals.
	Students will be able
	• To discriminate continuous and discrete time signals and systems.
C	• To understand the transformation of discrete time signal to Z domain.
Course	• To analyse frequency response of systems using Z domain.
Outcomes	• To understand discrete and fast Fourier transform.
	• To design FIR system.
	• To design IIR System.

Module	Contents	Hours						
1	Introduction	06						
	Classification of Signal and System:							
	Definition and classification of continuous and discrete signals. Standard							
	signals, periodic/non periodic, Even and odd, Energy and power signal,							
	Sampling Theorem (Derivation is not Required), Basic operations on							
	signal (Folding, Scaling and Time shifting). Definition and classification							
	of systems: Causal /Anti causal, Time-Variant/Invariant, Linear/Non-							
	Linear, stable/unstable, Memory/ Memory less System (static and							
	dynamic). Convolution in DT domain (Matrix Method only)							
2	Z-Transform	06						
	Z-Transform of bilateral signal, Definition of ROC, Properties of ROC,							
	Properties of Z-transform, Inverse Z-Transform (only partial fraction)							
3	Frequency Response	06						
	Pole-zero plot in DT domain, Minimum phase, Maximum phase, Mixed							
	phase and Linear, Phase System based on location of zeros, Low pass,							
	high pass, Band pass and band reject system based on pass band							
	frequency, Formation of Difference Equation, Solution of difference							
	Equation (with & without initial Conditions), Zero input, zero state and							
	Total Response of the system, Magnitude and phase response (only							
	Analytical Method)							
4	Discrete and Fast Fourier Transform	06						
	DTFT, DFT & IDFT (Only Matrix Method), Properties of DFT, DIT							
	FFT Algorithm (Radix-2)							
5	Design of FIR System	06						

	Introduction to FIR System, Group Delay, phase Delay, Condition for						
	Linear phase FIR system, Window Technique (only Rectangular						
	window function, Hamming Window function)						
6	Design of IIR System						
	Introduction to IIR System & Bilinear Transformation, Digital						
	Butterworth Filter design using Bilinear Transformation						

Text Books:

- 1. Salivahan S.," Digital Signal Processing", TMH Publication, 2012
- 2. Oppenhein & Schafer," Discrete Time Signal Processing," PHI Publication 1989.
- 3. Haykin S and Van Veen B," Signal and System", Wiley Publication, 2nd Ed.
- 4. Linder D.K.," Introduction to Signal & System," McGraw Hill International, 1999.

Reference Books:

- 1. Proakis & Manolakis," Digital Signal Processing", PHI Publication, 1995.
- 2. Mitra S.K.," Digital Signal Processing," TMH Publication, 2001.
- 3. Li Tan," Digital Signal Processing, Fundamental & Application", Elsevier Publisher, Academic Press

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEC604	Microcontroller and its Applications (abbreviated as MCA)	4	-	4	-	4		

Course		Examination Scheme							
	Course Name	Internal Assessment			End	Exam	Term	Total	
couc		Test 1	Test 2	Ava	Sem.	Duration	Work	Totai	
		Test I	Test 2	Avg.	Exam	(Hrs.)			
EEC604	Microcontroller and its Applications	20	20	20	03	80	-	100	

Course	• To impart knowledge on PIC 18 microcontroller based embedded					
Objectives	system using C programming.					
	Students will be able					
	• To understand the features and architecture of PIC 18 microcontroller.					
	• To understand the instructional set and apply to basic arithmetic and					
Course	logical operations.					
Outcomos	• To understand the supportive devices of PIC 18 microcontrollers.					
Outcomes	• To understand the interfacing of PIC 18 microcontroller and it's					
	peripheral.					
	• To understand the coding of PIC 18 microcontroller using C language.					
	• To design general purpose applications of PIC 18 microcontroller.					

Module	Contents	Hours
1	Introduction to Microcontroller	06
	Block diagram of generic micro controller, Micro controller versus	
	Microprocessor, A brief history of PIC microcontroller, Overview of	
	PIC 18 family and features, Internal Bus structure of PIC	
	microcontroller, Clock frequency, machine cycle and instruction	
	cycle.	
2	PIC18F Programming Model and Instruction Set	12
	PIC18 microcontroller programming model, Bus architecture, PIC	
	microcontroller program memory and data memory organization,	
	Special Function Registers (SFRs), General Purpose Registers	
	(GPRs), CPU registers, Working Register (Wreg), Status Register,	
	Bank Select Register (BSR), Instruction Decoder, Program Counter	
	(PC) and program ROM, File Select Register (FSR) and File	
	memory, Stack Pointer (STKPTR) and Stack, PIC 18 internal	
	Architecture (ALU, EEPROM, RAM, IO Ports, Timer, CCP module,	
	ADC), Concept of Pipelining.	
	Instruction Set, Data transfer instructions, Arithmetic and Logical	
	Instructions, Rotate instructions, Branch instructions, Bit	
	manipulation instructions. (Assembly programs are restricted to basic	

	arithmetic and logical operations only)	
3	PIC 18 Support Devices	08
	Timer Module: Basic Concept of Timers and counters, Timer	
	Registers, Control Registers, 8 bit and 16 bit operation (only for	
	Timer 0 and 1), CCP module (Capture, Compare and PWM).	
	ADC module: ADC Features, Block diagram of ADC module, ADC	
	Registers, ADCON0, ADCON1.	
	Interrupt Module: Basic concept of Interrupt, PIC 18 Interrupts,	
	Interrupt versus polling, Interrupt sources, Interrupt vector, Interrupt	
	service routine, Interrupt process, RCON Register, INTCON, IPR1,	
	PIE1.	
4	Parallel Ports and Serial Communication	06
	IO PORT Module: Basic concept of I/O interfacing, Port Registers,	
	TRIS registers, LAT registers, Simple port interfacing and	
	addressing, Interfacing input peripherals, Interfacing output	
	peripherals.	
	Serial communication: Basics of serial communication, USART	
	module, SPBRG, TXREG, RCREG, TXSTA, RCSTA, PIR1.	
5	PIC Programming in C	08
	IO programming: Byte size IO, Bit addressable IO.	
	Timer programming: Generating delay, generating frequency.	
	Interrupt programming: Timer0 and Timer1 interrupt to generate	
	square wave.	
	Serial port programming: Transmit data serially, Receive data	
	serially.	
6	Microcontroller Applications	08
	Interfacing matrix keyboard and Seven segments LED display, LCD	
	Interfacing, ADC Interfacing, Traffic signal controller, DC motor	
	interfacing, Stepper motor interfacing, PWM signal generation.	

Reference Books:

- 1. Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC 18 Microcontroller Family), Ramesh Gaonkar, Penram International publications (Ind) Pvt. Ltd.
- 2. PIC Microcontroller and Embedded Systems, Muhammad Ali Mazidi, Rolind D Mckinlay and Danny Causey, Pearson Education.
- 3. Microcontroller from Assembly Language to C using PIC18FXX2, Robert B. Reese, Davinici Engineering press.
- 4. PIC Microcontroller: An Introduction to Software and Hardware Interfacing, Han Way Huang, Cengage Learning.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
		Theory	Tutorial	Theory	Tutorial	Total	
EEC605	Control System -II (abbreviated as CS-II)	4	-	4	-	4	

Course	Course Name	Examination Scheme							
		Internal Assessment			End	Exam	Term	Total	
couc		Test 1	Test 2	Ava	Sem.	Duration	Work	Total	
		1050 1	1050 2	Avg.	Exam	(Hrs.)			
EEC605	Control System – II	20	20	20	80	03	-	100	

Course	• To impart knowledge and skill on compensator design.
Objectives	• To study basics of digital control system and design of digital compensator.
	Students will be able
	• To understand the basic design of various compensators.
C	• To design compensators using root locus techniques.
Course	• To design compensators using frequency response techniques.
Outcomes	• To design compensators using state variable approach.
	• To illustrate basics of digital control system.
	• To design digital compensators.

Module	Contents	Hours
1	Introduction to the Compensator: Basic concept of compensator	04
	design, its requirement, position of compensator in a control system,	
	cascade compensator, feedback compensator, gain compensation, lag,	
	lead and lag-lead compensator, proportional, derivative, integral	
	Compensation, Three term PID, physical realization of compensator	
	with passive and active components, basic block diagrams of a	
	compensated closed loop control system	
2	Design of Compensators using Root Locus Technique: Introduction,	12
	improving steady state error by gain compensation, transient response	
	improvement by cascade compensation, improving steady state and	
	transient response, design of rate feedback compensator, notch filter,	
3	Design of Compensators using Frequency response Technique	10
	(Bode Plot): Introduction, transient response improvement by gain	
	adjustment, Lag compensation, Lead compensation, Lag-lead	
	compensation.	
4	Design of Compensators using State variable approach:	8
	Introduction, pole placement topology, controller design by pole	
	placement topology in phase variable form, controllability and	
	complete controllability, controllability matrix, controllability by	
	inspection, alternative approach to controller design, controller design	
	by transformation.	
	Introduction to Observer / estimator, full order and reduced order	
	observer/ estimator, observability matrix, observability by inspection,	
	observer design by pole placement alternative approach to Observer	

	design, Observer design by transformation, steady state error design using integral control	
5	Digital control System: Introduction, advantage of digital control, components of digital control system, derivation of digital/ pulse transfer function, block diagram reduction, stability of digital system on Z-plane, bilinear transformation, steady state error and error constants	6
6	Design of Digital Compensators: Transient response on the Z-plane, gain design on Z plane for transient response using root locus, stability design by root locus, cascade compensation (design of digital lead, lag and lag-lead compensator)of digital system using s-plane, implementing the digital compensator.	8

Text books:

1. Control system engineering by Norman Nise 2nd to latest edition

2. Control Engineering: An Introductory course by Wilkie J., Johnson M., Katebi R., Palgrave MacMillan, Ist to latest edition

3. Industrial Control Electronics: Devices, Systems and Applications by Bartelt, Delmar Thomson Learning, 1st edition

4. Introduction to Programmable Logic Controller by Dunning G, Delmar Thomson Learning, 2nd edition

Reference books:

1. Modern control Engineering by Richard C Dorf, SH Bishop, Wesley edition eighth Edition

2. Linear Control system Analysis and design with MATLAB, by J.J. Azzo, C. H. Houpis, S. N. Sheldon, Marcel Dekkar, ISBN 0824740386

3. Control System Engineering, Shivanagraju s. Devi L., New age International latest edition

- 4. Control System engineering by Nagrath and Gopal, 5th to latest edition, Wiley Eastern
- 5. Modern control system engineering by K. Ogata, printice Hall.
- 6. Automatic control systems, Basic analysis and Design, William A. Wolovich, Oxford
- 7. Process Control principles and applications, Surekha Bharot, Oxford Higher education

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned		
		Theory	Tutorial	Theory	Tutorial	Total
EEDLO 6021	Digital Communication Engineering	3	1	3	1	4
	(abbreviated as DCE)					

		Examination Scheme							
Course	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
	Digital								
6021	Communication	20	20	20	80	03	25	125	
	Engineering								

Course Objectives	• To impart knowledge and skill on digital communication engineering.
Course Outcomes	 Students will be able To understand the concept and blocks of digital communication system. To understand and analyse the performance of base band and pass band digital communication system. To analyse the different modulation techniques used in digital communication system. To identify the presence of error in coded signal and design the error control system. To understand basic concept of different type of digital communication systems.

Module	Contents	Hours
1	Information theory	06
	Block diagram of a digital communication system, Concept and	
	measures of information, entropy and it's properties. Transmission rate	
	and channel capacity of noisy channels, Shannon's theorem on channel	
	capacity. Source Coding, Shannon's Source Coding Theorem, Shannon-	
	Fano Source Coding, Huffman Source Coding. Introduction to Lempel	
	Ziv coding	
2	Baseband Modulation and Transmission	06
	Line codes and their desirable properties, PSD of digital data. Discrete	
	PAM signals and its power spectra. Concept of inter channel and inter	
	symbol interference, Nyquist criterion for zero ISI, sinusoidal roll-off	
	filtering, correlative coding, equalizers, and eye pattern. Duo-binary	
	encoding and modified duo-binary encoding	
3	Baseband Detection	04
	Orthogonality, representation of signals. Maximum likelihood decoding	
	Correlation receiver, equivalence with matched filter	
4	Modulation Techniques	08
	Generation, detection, Coherent and non-coherent reception, signal	
	space diagram, spectrum, bandwidth efficiency, and probability of error	

	analysis of : Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)Modulations, Binary Phase Shift Keying (BPSK) Modulation Ouaternary Phase Shift Keying OPSK)	
5	 5. Error Control Systems:- 5.1 Types of error control, error control codes, linear block codes, generator matrix, and systematic linear block. codes, parity check matrix, syndrome testing ,error correction, and decoder implementation 5.2 Cyclic codes: Algebraic structure of cyclic codes, binary cyclic code properties, encoding in systematic 5.3 Introduction of Convolution code: State diagram, code tree, trellis diagram 	08
6	Overview of different types of communication :-	04
	Power Line Carrier communication, Satellite communication, OFC (Block Diagram level)	
	(Dioen Diugrunn ie ver)	

Text Books:

- 1. Tomasi W., "Advanced Electronics Communication systems", PGI, 4th Edition1998
- Taub & Schiling, "Principles of Communication Systems", McGraw Hill, 2nd Ed. 1987
- 3. John C. proakis, "Digital Communication", McGraw Hill International, 1995
- 4. Haykin S, John Wiley & Sons, "Digital Communication", 3rd Ed. 1995

Reference Books:

- 1. Lathi B.P., "Modern Digital and Analog Communication System, Oxford University Press, 3rd Edition 1998
- Dennis Roddy and John Coolen, "Electronic Communications", Prentice Hall of India, 3rd Ed. 1992
- 3. Amitabha Bhattacharya, "Digital Communication", Tata Mcgraw Hill

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total four questions need to be solved.

- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Teachin (Contac	g Scheme et Hours)	Credits Assigned		
		Theory	Tutorial	Theory	Tutorial	Total
EEDLO 6022	Micro-Grid (abbreviated as MG)	3	1	3	1	4

		Examination Scheme							
Course	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Ava	Sem.	Duration	Work	10141	
		Test I	Test 2	Avg.	Exam	(Hrs.)			
EEDLO 6022	Micro-Grid	20	20	20	80	03	25	125	

Course Objectives	 To impart knowledge of renewable energy based Microgrid technology, types and issues associated in their practical realization. To elaborate the various control and operational strategies used for practical microgrids.
Course Outcomes	 Students will be able To identify and describe the evolvement Microgrid, its features and barriers. To select, size and design the various microgrid resources. To model, analyze and design the power electronics (PE) interfaces for various microgrid sources To identify and describe the role communication in Microgrid realization. To identify and describe various operational strategies and protection schemes suitable for Microgrid. To apprise the different standards applicable for microgrid deployment

Module	Contents	Hours
1	Introduction to Microgrid:	03
	Microgrid: Definition, What is not a microgrid, Typical structure and	
	configuration of a microgrid, Significance of microgrids, Sources of	
	microgrid, Types of microgrids, AC, DC and hybrid microgrids;	
	Technical implications and social fall out of microgrid, Market Models	
	and business cases for microgrids.	
2	Microgrid Sources and Power Electronic Interfaces:	08
	Review of Microgrid sources: basics characteristics and selection; Power	
	Electronics (PE) interface and design for microgrid DC and AC sources.	
	Protection and co-ordination, Power Quality issues and Solutions;	
	Microgrid and Energy Storage Systems (ESS), Portable and Stationary	
	ESS, Review of Flywheel, Battery and Ultra-capacitor; PE Interface	
	design for ESS.	
3	Control and Design of Power Electronic Interfaces:	10
	Determination of Control laws, Power relations and power control, Bi-	
	directionality and its need in a Microgrid; Control of DC-DC converters	
	and inverter and challenges in a Microgrid; Micro-grid Control	
	Strategies: Centralized, Decentralized and Hierarchical control, Multi-	
	Agent System based control; Power Control and Energy Management in	
	Microgrids.	

4	Communication Infrastructure:	05
	Requirement of Communication System in microgrids, Communication	
	protocols and standards; Selection of communication protocols for	
	microgrids. Event triggered system and Time triggered system, Unicast	
	and Multicast Communication, Impact of time latencies on operation.	
5	Operation of Microgrid and Microgrid Protection:	07
	Modes of Operation: Grid Connected Mode, Islanding Mode, Issues in	
	Island Mode of operations, Islanding detection, Reliability and Stability	
	Issues in islanding ; Protection: Fault Behavior in Grid Connected Mode	
	and Island mode, Types of Protection Systems Fault Source Based	
	protection, Adaptive protection.	
6	Microgrid Standards and Deployment:	03
	IEEE-1547 series, Review of worldwide Microgrid installations,	
	Economic evaluation and planning for microgrids; Microgrids in smart	
	grid scenario.	

Text Books:

- 1. Nikos Hatziargyriou, "Microgrids: Architectures and Control," Wiley-IEEE Press, 2013
- 2. Magdi S Mahmoud, "Microgrid: Advanced Control Methods and Renewable Energy System Integration", Butterworth-Heinemann, 2016
- 3. S. M. Sharkh , M. A. Abu-Sara, G. I. Orfanoudakis and B. Hussain, "Power Electronic Converters for Microgrids," Wiley IEEE Press
- 4. Remus Teodorescu, Marco Liserre and Pedro Rodriguez, "Grid Converters for Photovoltaic and Wind Power Systems," Wiley Publications
- 5. Amirnaser Yazdani and Reza Iravani, "Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications," Wiley-IEEE Press

Reference Books:

- 1. Smart Grid:Fundamentals of Design and Analysis by James Momoh, IEEE Press and
- 2. Wiley Publications
- 3. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable Energy in Electric Power Systems", Wiley
- 4. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response" CRC Press

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials	:15 marks
Assignments	:05 marks
Attendance (Theory and Tutorial)	:05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Course	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned		
Code		Theory	Tutorial	Theory	Tutorial	Total
EEDLO 6023	Advanced Power Electronics (abbreviated as APE)	3	1	3	1	4

		Examination Scheme						
Course code	Course Name							
		Internal Assessment			End	Exam	Term	Total
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total
					Exam	(Hrs.)		
EEDLO 6023	Advanced Power Electronics	20	20	20	80	03	25	125

Course Objectives	 To understand dc to dc conversion with isolation, the underlying principles of converter operation and hence to analyze different converter circuits for power conversion. To understand the principles of design of magnetics such as high frequency transformers and inductors. To keep abreast with the latest technologies and research going on in different areas related to power electronics. To enhance the capability of problem solving skills.
	• To model the converter and design the controller for deeper understanding and detailed analysis.
	Student will be able to
	• Select and design power electronic converter topologies for a broad
	range of energy conversion applications.
	• Analyze and simulate the performance of power electronic conversion
	• Ability to model and design controllers for the closed loop operation of
Course	• Ability to model and design controllers for the closed loop operation of power converters
Outcomes	 Apply the basic concepts of power electronics to design the circuits in
	the fields of AC and DC drives, power generation and energy
	conversion, industrial applications, extraction of energy from
	renewable sources.
	 Build and troubleshoot power electronics circuits.
	• Deliver technological solution in the field of power electronics.

Module	Contents	Hours
1	Switching Voltage Regulators Introduction; Linear power supply	10
	(voltage regulators); Switching voltage regulators; unidirectional and	
	bidirectional core excitation; Review of basic dc-dc voltage regulator	
	configurations -Buck, Boost, Buck-Boost converters, Bidirectional	
	Converter (BDC) and their analysis for continuous and discontinuous	
	mode; Other converter configurations like Flyback converter, Forward	
	converter, Push-pull converter; Design criteria for SMPS; Multi-output	
	switch mode regulator.	

2	Resonant dc to dc converters: Drawbacks of switch-mode converters,	03
	classification of resonant converters, basic resonant circuit concepts,	
	Load resonant converters, series and parallel loaded, steady state	
	operating characteristics, Resonant switch converters - ZVS, ZCS,	
	comparison of resonant converters, applications of resonant converters	
3	Design of Magnetics (Boost, Buck, BDC and flyback only).: Review	05
	of magnetic concepts, volt-sec balance, area product, design of inductor,	
	design of high frequency transformer, numericals on design of inductor	
	and transformer for dc to dc converters.	
4	Modeling and control converters and inverter (Boost, Buck, BDC	09
	and flyback only): State space model of various dc to dc converters,	
	state space averaging techniques, small signal analysis, transfer function,	
	feedback control, compensator design, voltage mode control, current	
	mode control. Modeling of grid connected Inverter with LC filter,	
	Compensator design with current mode control and DC link voltage	
	control loop. Digital control of power electronic converters	
5	Multi-Level Inverter: Need for multilevel inverters, Diode clamped,	04
	flying capacitor and cascaded MLI, Phase shifted and level shifted	
	PWM techniques, introduction to SVM for three level inverter,	
	Applications of multilevel inverters.	
6	Applications of power electronic converters: Solar PV Power	05
	Conditioning unit (PCU), Battery PCU, Active Filters, AC and DC	
	drives. Thermal management and EMI issues in Practical power	
	Electronics systems	

Text Books:

- 1. N.Mohan, T.M.Undeland, W.P Robbins, —Power Electronics, Converters, Applications & Design, Wiley India.
- 2. R W Erickson and D Maksimovic, —Fundamental of Power Electronics, Springer, 2nd Edition.
- 3. M.H.Rashid, Hand book of Power Electronics", Third edition Butterworth-Heinemann; 2011
- 4. Joseph Vithayathil Power Electronics, Tata McGraw Hill
- 5. Daniel.W.Hart, "Power Electronics", Mc GrawHill Publications 2010
- 6. P.S Bhimbra, "Power Electronics", Khanna Publishers.
- 7. Simon Ang, Alejandro Oliva, "Power-Switching Converters" Taylor and Francis group
- 8. L.Umanand, "Design of Magnetic Components for Switched Mode Power Converters", New Age International

Reference Books:

- 1. P. T. Krein, Elements of Power Electronics, Oxford University Press.
- 2. L. Umanad, "Power Electronics: Essentials & Applications," Wiley.
- 3. A Yazdani, R. Iravani, Voltage- Sourced Converters in Power Systems, Wiley, IEEE press.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Term work:

Term work shall consist of minimum six tutorials and one group mini project.

Mini-project: Group of students (4 in a group) will choose a fairly complex power electronics application in their preferred area, complete the analysis and detailed design of power converter and control for this application, and finally validate the design using hardware implementation supported with simulation(if necessary). A formal technical report is required on the last day of class.

The distribution of marks for term work shall be as follows:

Tutorials:10 marksGroup Mini Project:10 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Course	Course Name	Teachin (Conta	ng Scheme ct Hours)	Credits Assigned		
Coue		Theory	Practical	Theory	Practical	Total
EEL601	Electrical Protection					
	Lab	-	2	-	1	1
	(abbreviated as EP Lab)					

Course		Examination Scheme							
		Theory				Practical			
Code	Course Name	Interna	al Assess	sment	End	Torm	Pract.		Total
Couc		Test 1	Test 2	Δνα	Sem.	Work	and	Oral	
		1050 1	1050 2	Avg.	Exam	WOIK	Oral		
EEL601	Electrical Protection Lab	-	-	-	-	25	-	25	50

Course Objectives	• To introduce the concept of different protection schemes.
Course Outcomes	 Students will be able To understand the concept of various over current protection scheme and its applications in power system. To understand the concept of various over/under voltage, over/under frequency and temperature protection scheme and its applications. To understand the working principle of various protective devices.

Syllabus: Same as that of Course EEC601 protection and switchgear Engineering.

Suggested List of Laboratory Experiment:

- 1. Demonstration of Inverse time Over-current Relay & Plotting the characteristics
- 2. Demonstration of Over-current protection Relay
- 3. Demonstration of Directional Over-current Protection Relay
- 4. Demonstration of Differential Over-current Protection Relay
- 5. Demonstration of Under/Overvoltage Protection
- 6. Demonstration of Motor winding temperature protection
- 7. Demonstration of Gas actuated Relays
- 8. Demonstration of working parts of different Fuses, MCB, MCCB, RCCB & Circuit Breakers.
- 9. Visit to a substation & a report preparation.

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum six experiments. The distribution of marks shall be as follows:

Experiments Performance	:10 marks
Journal	:10 marks
Attendance (Theory and Practical)	:05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.

University of Mumbai						
Course	Course Name	Teaching Scheme	Credits Assigned			

University of Mumbai, Electrical Engineering, Rev. 2016-17

Code		(Conta	ct Hours)			
		Theory	Practical	Theory	Practical	Total
EEL602	Electrical Machines Lab - IV (abbreviated as EMC Lab-IV)	-	2	-	1	1

Course Code		Examination Scheme								
	Course Name	Theory				I				
		Internal Assessment			End	Torm	Pract.		Total	
		Test 1	Test 2	Avg.	Sem. Exam	Work	and Oral	Oral		
EEL602	Electrical Machines Lab -IV	-	-	-	-	25	25	-	50	

Course Objectives	• To impart practical knowledge on synchronous machines
	Students will be able
	• To analyse the operation of synchronous machines.
Course	• To analyse the voltage regulation of synchronous machines.
Outcomes	• To analyse the synchronization or parallel operation of synchronous machine.
	• To determine the parameters of synchronous machines for its analysis.

Syllabus: Same as that of Course EEC602 Electrical machines - IV

Suggested List of Laboratory Experiment:

- 1. Constructional details of Synchronous machine
- 2. Voltage regulation of Alternator by Direct loading method
- 3. Voltage regulation of Alternator by EMF and MMF method
- 4. Voltage regulation of Alternator by ZPF and ASA method
- 5. Synchronization / Parallel operation of Alternator
- 6. Starting methods of Synchronous motor
- 7. 'V' and inverted 'V' curve of Synchronous motor
- 8. Determination of X_d and X_q of Synchronous machine by Slip test
- 9. Use of Synchronous motor as a Synchronous condenser
- 10. Loading of Synchronous motor by Brake test with rated excitation

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum six experiments. The distribution of marks shall be as follows:

Experiments Performance	:10 marks
Journal	:10 marks
Attendance (Theory and Practical)	:05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Course Code	Course Name	Teachin (Conta	ng Scheme ct Hours)	Credits Assigned			
		Theory	Practical	Theory	Practical	Total	
EEL603	Microcontroller Lab (abbreviated as MC Lab)	-	2	-	1	1	

Course Code		Examination Scheme							
	Course Name	Theory				H			
		Internal Assessment			End	Term	Pract.		Total
		Test 1	Test 2	Avg.	Sem.	Work	and	Oral	
					Exam	WOIK	Oral		
EEL603	Microcontroller Lab	-	-	-	-	25	25	-	50

Course Objectives	• To impart the programming knowledge of PIC 18 microcontroller.
	Students will be able
Course Outcomes	 To program simple arithmetic and logical operations using PIC 18 microcontroller. To program timer and ADC of PIC 18 microcontroller for different applications. To interface different IO devices with PIC 18 microcontroller.

Syllabus: Same as that of Course EEC604 Microcontroller and its applications **Suggested List of Laboratory Experiment:**

Basic Programming

- 1. Addition, subtraction
- 2. Logical operations
- 3. Multiplication and division
- 4. Sort even and odd numbers
- 5. Sort negative and positive numbers
- 6. Toggle the bits of ports

Timer programming

- 1. Generate square wave
- 2. Generate time delay
- 3. Counter program
- 4. Generate the PWM pattern
- ADC programming
 - 1. Analog to digital conversion

Peripheral Interface programming

- 1. LCD interface
- 2. LED interface
- 3. Stepper motor interface
- 4. DC motor interface
- 5. Serial port interface

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

The term work shall consist of minimum **eight** experiments based on PIC 18F microcontroller using embedded C language. The distribution of marks shall be as follows:

Experiments Performance :10 marks Journal :10 marks

Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai									
Course	Course Name	Teachin (Conta	g Scheme ct Hours)	Credits Assigned					
Coue		Theory	Practical	Theory	Credits Assigned eory Practical - 1	Total			
EEL604	Simulation Lab-II (abbreviated as Sim Lab - II)	-	2	-	1	1			

Course Code		Examination Scheme							
	Course Name	Theory				I			
		Internal Assessment			End	Torm	Pract.		Total
		Test 1 Test	Test 2	Test 2 Avg.	Sem.	Work	and	Oral	
			1050 2		Exam	W OIR	Oral		
EEL604	Simulation Lab-II	-	-	-	-	25	-	25	50

Course Objectives	• To impart knowledge on coding and simulation of electrical systems.
	Students will be able
Commo	• To code or simulate signal systems for its analysis.
Course	• To code or simulate power system for its analysis.
Outcomes	• To code or simulate power electronics converter for its analysis.
	• To code or simulate electrical machines for its analysis.

Syllabus: Same as that of all core courses of semester VI.

Suggested List of Laboratory Experiment:

- 1. Algorithm for Basic operation on signal
- 2. Algorithm for Linear and Circular Convolution
- 3. Algorithm for step, impulse and frequency Response in Digital system
- 4. Algorithm for FFT for DFT Computation
- 5. Algorithm for Design of FIR System using Rectangular Window
- 6. Algorithm for Design of Butterworth Digital IIR System
- 7. Simulation of 1- phase full wave Rectifier with R-L Load
- 8. Simulation of Fault Analysis
- 9. Simulation of OC & SC Test of 3-phase IM.
- 10. Simulation of 1- phase full wave Controlled Rectifier with R-L Load

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum six experiments. The distribution of marks shall be as follows:

Experiments Performance	:10 marks
Journal	:10 marks
Attendance (Theory and Practical)	:05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.

AC Item No.

UNIVERSITY OF MUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17

Under

FACULTY OF TECHNOLOGY

Electrical Engineering

Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

Program Structure for BE Electrical Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VII

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EEC701	Power System - III	4	-	1	4	-	1	5
EEC702	Drives and Control	4	-	-	4	-	-	4
EEC703	High Voltage Direct Current Transmission	4	-	-	4	-	-	4
EEDLO703X	Department Level Optional Course-III	3	-	1	3	-	1	4
ILO701X	Institute Level Optional Course-I	3	-	-	3	-	-	3
EEL701	Simulation Lab - III	-	2	-	-	1	-	1
EEL702	Drives and Control Lab	-	2	-	-	1	-	1
EEL703	Project-I	-	6	-	-	3	-	3
	Total	18	10	2	18	5	2	25

Examination Scheme for Semester VII

		Examination Scheme												
Course	Course Name	TheoryExternalInto(UA)(()		ernal	rnal Term Work		Practical		Oral		Pract./Oral			
Code		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Total Marks
EEC701	Power System - III	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC702	Drives and Control	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC703	High Voltage Direct Current Transmission	80	32	20	8	-	-	-	-	-	-	-	-	100
EEDLO 703X	Department Level Optional Course-III	80	32	20	8	25	10	-	-	-	-	-	-	125
ILO701 X	Institute Level Optional Course-I	80	32	20	8	-	-	-	-	-	-	-	-	100
EEL701	Simulation Lab - III	-	-	-	-	25	10	-	-	25	10	-	-	50
EEL702	Drives and Control Lab	-	-	-	-	25	10	-	-	-	-	25	10	50
EEL703	Project-I	-	-	-	-	25	10	-	-	25	10	-	-	50
Total		400	-	100	-	125	-	-	-	50	-	25	-	700

Program Structure for BE Electrical Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VIII

Course	Course Name		Feaching Sche (Contact Hou	eme rs)	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EEC801	Design, Management and Auditing of Electrical Systems	4	-	1	4	-	1	5	
EEC802	Flexible AC Transmission System	4	-	-	4	-	-	4	
EEDLO80 4X	Department Level Optional Course-IV	3	-	1	3	-	1	4	
ILO802X	Institute Level Optional Course-II	3	-	-	3	-	-	3	
EEL801	Simulation Lab - IV	-	2	-	-	1	-	1	
EEL802	Electrical System Design Lab		2	-	-	1	-	1	
EEL803	Project-II	-	12	-	-	6	-	6	
Total		14	16	2	14	8	2	24	

Examination Scheme for Semester VIII

		Examination Scheme												
		Theory			amal	Term Work		Practical		Oral		Pract./Oral		
Course	Course Name	External (UA)		(CA)										Total
Code		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC801	Design, Management and Auditing of Electrical Systems	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC802	Flexible AC Transmission System	80	32	20	8	-	_	-	-	-	-	-	-	100
EEDLO 804X	Department Level Optional Course-IV	80	32	20	8	25	10	-	-	-	-	-	-	125
ILO802 X	Institute Level Optional Course-II	80	32	20	8	-	-	-	-	-	-	-	-	100
EEL801	Simulation Lab - IV	-	-	-	-	25	10	-	-	25	10	-	-	50
EEL802	Electrical System Design Lab					25	10	-	-	25	10	-	-	50
EEL803	Project-II	-	-	-	-	50	20	-	-	50	20	-	-	100
Total		320	-	80	-	150	-	-	-	100	-	-	-	650

List of Department Level Optional Courses

Course Code	Department Level Optional Course - III
EEDLO7031	High Voltage Engineering
EEDLO7032	Electric Vehicle Technology
EEDLO7033	Industrial Controller
EEDLO7034	Power Quality

Course Code	Department Level Optional Course - IV
EEDLO8041	Illumination Engineering
EEDLO8042	Smart Grid
EEDLO8043	Power System Modeling and Control
EEDLO8044	Power System Planning and Reliability

List of Institute Level Optional Courses

Course Code	Institute Level Optional Course - I
ILO7011	Product Lifecycle Management
ILO7012	Reliability Engineering
ILO7013	Management Information System
ILO7014	Design of Experiments
ILO7015	Operation Research
ILO7016	Cyber Security and Laws
ILO7017	Disaster Management and Mitigation Measures
ILO7018	Energy Audit and Management
ILO7019	Development Engineering

Course Code	Institute Level Optional Course - II
ILO8021	Project Management
ILO8022	Finance Management
ILO8023	Entrepreneurship Development and Management
ILO8024	Human Resource Management
ILO8025	Professional Ethics and Corporate Social
	Responsibility (CSR)
ILO8026	Research Methodology
ILO8027	IPR and Patenting
ILO8028	Digital Business Management
ILO8029	Environmental Management

University of Mumbai										
Course	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned						
Code		Theory	Tutorial	Theory	Tutorial	Total				
EEC701	Power System -III (abbreviated as PS -III)	4	1	4	1	5				

	Course Name	Examination Scheme								
Course										
course		Interna	al Assess	ment	End Exam		Term	Total		
couc		Test 1	Test 2	Δνσ	Sem.	Duration	Work	Total		
		I CSt I	1030 2	Avg.	Exam	(Hrs.)				
EEC701	Power System – III	20	20	20	80	03	25	125		

Course Objectives	 To impact knowledge in power system operation and its control. To understand the formulation of unit commitment and economic load dispatch To illustrate the automatic frequency and voltage control strategies for single and two area case To study the different types of stability of power system and method to improve stability of power system
Course Outcomes	 Students will be able to analyze power system problem and find out its solutions • Identify and analyze the dynamics of power systems and methods to improve stability of system. Study different methods of load flow solutions. Application of optimization methods for task like economic load dispatch

Module	Contents	Hours
1	Load Flow Studies	12
	Introduction, network model formulation, formation of Y bus using	
	step by step method, formation of Y bus by singular transformation,	
	Load flow problem, Load flow Equation and methods of solution,	
	Approximate Load flow study, Gauss-Seidel method, Newton-	
	Raphson method ,Decoupled load flow method, Fast decoupled load	
	flow method, comparison of load flow method. (Numerical)	
2	Economic Operation of Power System	10
	Optimal operation of generators in thermal power station, heat rate	
	curve, input-output curve, IFC curves, optimum generation scheduling	
	neglecting	
	Transmission losses(coordinate equation), optimum generation	
	scheduling considering transmission losses (Exact coordinate	
	equation), Transmission loss formula, Bmn coefficient, Inherent	
	procedure of solving co-ordination equation, optimal unit commitment:	
	dynamic programming method, Reliability considerations(Numerical)	
3	Automatic Generation and voltage control	08
	Introduction, Basic control loops in generator, AVR loop, Thermal	
	control, speed governing system and transfer function, steam turbine	

	and power system transfer function, Load frequency control(single	
	area), state and dynamic response.	
	Load frequency control of Two area system, static and dynamic	
	response analysis of two area system, Load frequency control with	
	with generation rate constraints, Dead band and its effect on	
	AGC(Numerical)	
4	Power System Stability	10
	Introduction to stability, types of stability, Power angle curve,	
	dynamics of synchronous machine, power angle equation, steady state	
	stability, swing equation, transient stability, equal area criterion,	
	application of equal area criterion, point by point solution of swing	
	equation, some techniques for improving transient	
	stability.(Numerical)	
5	Voltage Stability	03
	Introduction, definitions, short circuit capacity, comparison of rotor	
	angle and voltage stability, reactive power flow and voltage collapse,	
	voltage stability.	
	Surge impedance loading, PV and V-O curves, Various methods of	
	voltage control shunt compensation, series compensation, and	
	comparison of series and shunt compensation	
6	Power system security and interchange of power	05
	Power system security	
	Introduction, System state classification, security analysis, contingency	
	analysis, sensitivity factor.	
	Interchange of power	
	Interchange of power between interconnected utilities, types of	
	interchange ,capacity and diversity interchange ,energy banking ,power	
	pools	

Text Books:

- 1. Kothari.D.P,Nagrath.I.J, "Modern power system Analysis",TMH publication,Third Edition,2008.
- 2. Kothari.D.P,Nagrath.I.J, "Power system Engineering",TMH publication,second edition,2008.
- 3. George Kausic. "computer Aided Power System Analysis", Prentice Hall publication.2008
- 4. Chakrabarti.A,Halder.S., "Power System Analysis-Operation and Control" PHI, second Edision 2008
- 5. Allen.J.Wood.,Bruce.F.Wollenberg., "Power Generation operation and control",Wiley India,Second Edition,2007.
- 6. Prabha Kundur, 'Power System Stabilty and control', TMH publication, 2008.
- 7. P.S.R.Murthy,"Power System Operation and control", Tata McGraw Hill publishing Co.Ltd.

Reference Books:

- 1. 1.Soman.S.A,Kharpade.S.A,and Subha Pandit 'Computer Methods for Large Power system Analysis , an object Oriented Approach',Kluwer Academic Publisher New York 2001.
- 2. 2.Anderson P.M.Fouad A.A, 'Power system control and stability', Wiley Interscience, 2008 Edition
- 3. 3.Kimbark E W, 'Power system Stabilty', Volume I, II, and III, wiley Publication.
- 4. 4.Jr. W.D. Stevenson.,G.J.Grainger. 'Elements of power system'.Mc-GrawHill,Publication.
- 5. 5.Hadi saadat,Power system Analysis,TMH Publication,Second Edison,2002
- 6. 6.P.K.Nagsarkar, M.S.Sukhija, "Power System Analysis", Oxford, second edition 2014
- 7. 7.S.Sivanagaraju,G.Sreenivasan power system operation and contrl,person publication,2010.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials:15 marksAssignments:05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEC702	Drives and Control (abbreviated as D&C)	4	-	4	-	4		

Course	Course Name	Examination Scheme							
		Theory							
		Internal Assessment			End	Exam	Term	Total	
couc		Tost 1	Tost 2	Ava	Sem.	Duration	Work	Total	
		I est I	Iest 2	Avg.	Exam	(Hrs.)			
EEC702	Drives and Control	20	20	20	80	03	-	100	

Course Objectives	• To impart knowledge on basic concept of DC and AC drives, various speed control techniques involved with both DC and AC drives and advanced speed control techniques using power electronic converter used in industry.							
Course Outcomes	 Students will be able To understand the dynamics of electrical drive. To understand the motor power rating calculation for a specific application for reliable operation. To understand the modes of operation and close loop control of electrical drive. To analyse the speed control of DC drives in an energy efficient manner using power electronics. To analyse the speed control of induction motor drive using various methods 							
	 To learn the advance control techniques for AC drives. 							

Module	Contents	Hours
1	Electrical Drives: Introduction & Dynamics	10
	Introduction, Advantages of Electrical Drives, Parts of Electrical Drives,	
	Choice of Electrical Drives, Status of DC and AC Drives, Fundamental	
	Torque equations, Speed Torque conventions and Multi-quadrant	
	Operation, Equivalent values of Drive Parameter, Measurement of	
	Moment of Inertia, Components of Load Torques, Nature and	
	Classification of Load Torques, Calculation of Time and Energy-Loss in	
	Transient Operations, Steady State Stability, Load Equalization	
2	Selection of Motor Power Rating:	04
	Thermal Model of Motor for Heating and Cooling, Classes of Motor	
	Rating, Determination of Motor Rating	
3	Control of Electrical Drives:	04
	Modes of Operation, Speed Control, Drive Classification,	
	Closed loop Control of Drives- Speed control loop with inner loop of	
	current control.	
	Current control techniques- PWM and hysteresis	
	Static and dynamic performance of drive.	

4	DC Drives:	08
	Basic multi-quadrant (T - ω m) characteristics and equations of DC	
	motors.	
	Single phase drives- full converter drive and its performance parameters	
	(CCM), Duel converter drive	
	Three phase drives- Half-converter drive, fully-converter drive	
	DC-DC converter drive- principal of power control (step-down	
	chopper), regenerative brake control, rheostatic brake control,	
	performance parameters for braking and speed control	
	Control of dc drives- open loop and closed loop control (transfer	
	function approach and microcontroller control) clock diagrams	
	(No Numerical on this module)	
5	AC Drives:	18
	Basic multi-quadrant (T - ω m) characteristics and equations Induction	
	Motor drives, Review of Speed-Torque relations, Review of Starting	
	methods,	
	Braking methods- Regenerative, Plugging and AC dynamic braking	
	only,	
	Speed Control: Stator voltage control, Variable frequency control, V/f	
	control, Static Rotor Resistance control, Slip Power Recovery - Static	
	Scherbius Drive, Review of d-q model of Induction Motor,	
	Introduction to Synchronous Motor Variable Speed drives.	
	(No Numerical on starters)	
6	Advanced control techniques- Principle of Vector Control, Block	04
	diagram of Direct Vector Control Scheme, Comparison of Scalar control	
	and Vector control, Direct Torque Control (DTC), field oriented control	
	(FOC), comparison between control techniques.	

Text Books:

- 1. Fundamentals of Electrical Drives by G.K.Dubey, Narosa Publication
- 2. A First Course on Electrical Drives by S.K.Pillai, New Age International.
- 3. Electrical Drives: Concepts and Applications by Vedam Subramanyam, T.M.H
- 4. Modern Power Electronics and AC Drives by B.K.Bose, Prentice Hall PTR
- 5. Power electronics by Muhammad H. Rashid, Pearson

Reference Books:

- 1. Electric Motor Drives: Modeling, Analysis and Control by Krishnan.R, PHI
- 2. Power Electronics by Joseph Vithayathil, Tata McGraw Hill
- 3. Power Semiconductor Controlled Drives by G. K. Dubey, Prentice Hall International

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEC703	High Voltage Direct Current Transmission (abbreviated as HVDCT)	4	-	4	-	4		

Course	Course Name	Examination Scheme							
code		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Test 2	est 2 Avg.	Sem.	Duration	Work	Total	
			Test 2		Exam	(Hrs.)			
	High Voltage								
EEC703	Direct Current	20	20	20	80	03	-	100	
	Transmission								

Course Objectives	• To impart knowledge on HVDC system, its control, protection along with brief analysis of HVDC converters
Objectives Course Outcomes	 with brief analysis of HVDC converters. Students will be able to Identify significance of dc over ac transmission systems, types of HVDC link, Components of HVDC system and applications. Analyse multi-pulse converters. Understand the basic control of HVDC system and its limitation, features and implementation. Understand converter firing control schemes for starting and stopping of HVDC link. Understand and analyse faults and protection of HVDC system
	• Understand harmonics, their causes, effects and use of different filters.

Module	Contents	Hours
1	Introduction to HVDC transmission: Early discoveries and applications, Limitation and advantages of AC and DC transmission, Classification of HVDC links, Components HVDC Transmission system, Ground Return Advantages and Problems, Advances in HVDC transmission. HVDC system application in wind power generation	04
2	Analysis of the Bridge rectifier: Analysis of six pulse converter with grid control but no overlap, Current and phase relations, Analysis of six pulse converter with grid control and overlap less than 60° , Relation between AC and DC quantities, Analysis with overlap greater than 60° , Rectifier operation output voltage, thyristor voltage waveforms with and without overlap, Inverter operation output voltage waveforms. Equivalent circuit of rectifier and inverter, Multi bridge converter, Numerical from converter circuits and multiple bridge converters.	12
3	HVDC System Control: Basic means of control, Limitation of manual control, Constant current	06
	verses constant voltage control, Desired features of control, Actual control characteristics. Significance of current margin. Power reversal.	
---	---	----
	Control implementation	
4	Converter Control: Converter Firing Control Schemes (EPC and IPC.	03
	Starting and shutting down the HVDC link	
5	Faults and protection:	08
	By pass valve, Causes and analysis of arc back, arc through, misfire,	
	current extinction, single commutation	
	failure, double commutation failure, short circuits in converter station	
	Protection against over current, over voltage	
6	Harmonics & Filters:	03
	Characteristics Harmonics and Un-Characteristics Harmonics, Causes,	
	Consequences, Trouble Caused by Harmonics, Means of Reducing	
	Harmonics, Filters, AC & DC Filters.	

Text Books:

- 1. Edward Wilson Kimbark "Direct Current Transmission" Wiley publication Inter science
- 2. K R Padiyar "HVDC power transmission systems" second edition, New Age International (p)Ltd
- 3. S. Kamkshaiah and V Kamraju "HVDC transmission" Tata McGraw Hill Education Pvt. Ltd, New Delhi
- 4. SN Singh, "Electric Power Generation, Transmission and Distribution, PHI, New Delhi 2nd edition, 2008

Reference Books:

- 1. S. Rao "EHVAC and HVDC Transmission Engineering and Practice" -Khanna publication, 1990
- 2. J. Arrillaga "HVDC Transmission" Wiley publication Inter science
- 3. C.L. Wadhwa "Electrical Power System (2nd Edition)"

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai						
Course Course Name		Teaching (Contac	g Scheme t Hours)	Credits Assigned		
Code		Theory	Tutorial	Theory	Tutorial	Total
EEDLO 7031	High Voltage Engineering (abbreviated as HVE)	3	1	3	1	4

		Examination Scheme						
Course	Course Name							
code		Internal Assessment			End	Exam	Term	Total
coue		Test 1	Test 2	Δνα	Sem.	Duration	Work	Total
		Test I	Test 2	Avg.	Exam	(Hrs.)		
EEDLO 7031	High Voltage Engineering	20	20	20	80	03	25	125

To sol Course To	make students able to explain the various breakdown processes in id, liquid and gaseous materials. provide knowledge of Testing, Generation & Measurement methods
Objectivesado• To	opted for DC, AC and Impulse voltages and currents. understand the modern numerical tools available in high-voltage
equ	ipment design and set-up of H.V. Laboratory.
Student wi	ill be able
Course Outcomes • Of for	know the fundamentals properties of the materials and their failure chanisms to get appropriate and optimal design. testing of different dielectric materials and the major requirements setting up of HV Laboratories.

Module	Contents	Hours
1	Electrostatic Fields, Their Control and Estimation:	04
	• Electric field Stress, its control and Estimation	
	• Analysis of Electric field intensity in Homogenous Isotropic Single	
	dielectric and multi dielectric system.	
	• Numerical methods – Finite difference, Finite Element and Charge	
	simulation method for estimation of Electric Field. Surge voltage,	
	their distribution and control	
2	Conduction and Breakdown in Air and Other Gaseous	07
	Dielectrics:	
	Gases as insulating media.	
	• Collision Processes, Ionization process in gas, Townsend's Theory,	
	current growth equation in presence of primary and secondary	
	ionization processes, Townsend's criterion for breakdown in	
	electronegative gases, Limitation of Townsend's theory.	
	• Panchen's law, Breakdown in non-uniform fields and corona	
	discharges.	
	Streamer mechanism of breakdown.	
	 Post-breakdown phenomenon and application. 	
	• Practical considerations in using gas for insulation purposes.	
	• (Numerical on Townsend's theory and Paschen's law)	
3	Breakdown in Liquid and Solid Dielectrics:	06

	Liquid Dielectrics.	
	• Conduction and breakdown in pure liquids.	
	• Conduction and breakdown in commercial liquids: Suspended	
	Particle Theory, Cavitations and bubble Theory.	
	Solid dielectrics used in practice	
	• Intrinsic, Electro-mechanical and Thermal breakdown.	
	• Breakdown of solid dielectrics in practice.	
	Breakdown of composite insulation.	
	• Application of insulating materials in electrical power apparatus,	
	electronic equipment's.	
4	Generation & Measurement of High Voltage and Currents:	07
	• Generation of high voltage and currents: Generation of high DC	
	voltages by rectifier, Voltage doublers and multiplier circuits.	
	Electrostatic machines.	
	• Generation of high AC voltage – Cascading of transformers, series	
	and parallel Resonance transformer (system), Tesla coil.	
	• Generation of impulse voltages and currents-Impulse voltage	
	definition, wave front and wave tail time, Multistage impulse	
	generator, Modified Marx circuit, Tripping and control of impulse	
	generators, Generation of high impulse current	
5	Measurement of High Voltages and Currents:	05
	• High ohmic series resistance with micro-ammeter.	
	•HVAC and impulse voltage-Resistance and capacitance voltage	
	dividers.	
	• Sphere gap for measurement of High DC, AC and impulse voltages.	
	 Measurement of High DC, AC and impulse currents 	
6	High Voltage Testing of Electrical Power Apparatus and H V	07
	Laboratories Layouts:	
	• Non-destructive testing of dielectric materials.	
	• DC resistivity measurement.	
	• Dielectric and loss factor measurement.	
	Partial discharge measurement.	
	• Testing of insulators and bushing, Power capacitors and cables	
	testing, testing of surge diverters.	
	• High Voltage laboratory-design, planning and layout Size and	
	dimensions of the equipment and their layout.	
	• Classification of HV laboratory, Earthing and Shielding of H.V.	
	laboratories, its importance.	

Text Books:

- 1. C. L. Wadhwa, "High Voltage Engineering", New Age International Publishers Ltd.
- 2. M. S. Naidu, V. Kamaraju, "High Voltage Engineering", Tata McGraw Hill Publication Co. Ltd. New Delhi

Reference Books:

1. E. Kuffel, W. S. Zaengl, J. Kuffel, "High Voltage Engineering Fundamentals", Newnes Publication

- 2. Prof. D. V. Razevig Translated from Russian by Dr. M. P. Chourasia, "High Voltage Engineering", Khanna Publishers, New Delhi
- 3. Ravindra Arora, Wolf Gang Mosch, "High Voltage Insulation Engineering", New Age International Publishers Ltd. Wiley Estern Ltd.
- 4. High Voltage Engineering Theory and Practice by M. Khalifa Marcel Dekker Inc. New York and Basel.
- 5. Subir Ray, "An Introduction to High Voltage Engineering" PHI Pvt. Ltd. New Delhi

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai						
Course	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned		
Code		Theory	Tutorial	Theory	Tutorial	Total
EEDLO 7032	Electric Vehicle Technology (abbreviated as EVT)	3	1	3	1	4

		Examination Scheme						
Course				Theor	у			
course	Course Course Name		Internal Assessment			Exam	Term	Total
coue		Test 1	Test 2	Aug	Sem.	Duration	Work	Total
		Test I	Test 2	Avg.	Exam	(Hrs.)		
EEDLO	Electric Vehicle	20	20	20	80	03	25	125
7032	Technology	20	20	20	80	03	23	123

Course Objectives	 Know the history of electric hybrid electric vehicles (EV & HEV) and emphasize the need and importance of EV-HEV for sustainable future. Introduce the fundamental concepts and principles of electric and hybrid electric vehicles drive train topologies Develop a thorough understanding of the key elements of EV/HEV: Electric Machines for Propulsion Applications and Energy Sources Model, analyze and design electric and hybrid electric vehicles drive train and to understand energy management strategies
Course Outcomes	 Students will be able To identify and describe the history and evolvement of electric & hybrid electric vehicles to emphasize on the need and importance of EV/HEV for sustainable future. To identify and describe the principles of various EV/HEVs drive train topologies along with their power flow control and fuel efficiency estimation. To design and select electric propulsion system components for EV/HEV drives suitability for the desirable performance and control. To compare and evaluate various energy sources and energy storage components for EV and HEV applications. To model, analyze and design EV/HEV drive train with energy management strategies. To recognize the need to adapt and engage in operations EV/HEV with the absolute technological change in the transportation system for sustainable future.

Module	Contents	Hours
1	Introduction:	05
	Basics of vehicles mechanisms, history of electric vehicles (EV) and	
	hybrid electric vehicles (HEV), need and importance of EV and	
	HEV, Power/Energy supplies requirements for EV/HEV applications,	
	vehicle power source characterization, and transmission	
	characteristics.	

2	Drive-train Topologies:	08
	Review of electric traction, various electric drive-train topologies,	
	basics of hybrid traction system, various hybrid drive-train	
	topologies, power flow control in drive-train topologies, fuel	
	efficiency analysis.	
3	DC and AC Machines for Propulsion Applications:	05
	Electric system components for EV/HEV, suitability of DC and AC	
	machines for EV/HEV applications, AC and DC Motor drives.	
	Advanced permanent magnet and switch reluctance machines,	
	configuration and control of drives.	
4	Energy Sources for EV/HEV:	05
	Requirements of energy supplies and storage in EV/HEV, Review of	
	batteries, fuel cells, flywheels and ultra-capacitors as energy sources	
	for EV/HEV, characteristics and comparison of energy sources for	
	EV/HEV, hybridization of different energy sources.	
5	Modeling and design of the drive trains:	08
	Modeling and analysis of EV/HEV drive train, sizing of motor, and	
	design of traction power electronics, various vehicle subsystems.	
6	Energy Management Strategies and Energy Efficiency:	05
	EV/HEV energy management strategies, classification and	
	comparison of various energy management strategies, energy	
	efficiency comparison for various EV and HEV variants	

Reference Books:

- 1. I. Hussein, *Electric and Hybrid Vehicles: Design Fundamentals*, CRC Press, 2003.
- 2. M. Ehsani, Y. Gao, S.E. Gay and Ali Emadi, *Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design*, CRC Press. 2005
- 3. Sheldon Williamsom, Energy Management Strategies for Electric and Plug-in Hybrid Vehicles, Springer 2013
- 4. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Wiley, 2003
- 5. C. MI, M. Abul and D. W. Gao, *Hybrid Electrical Vehicle Principles and Application* with Practical Perspectives, Wiley 2011
- 6. Robert A. Huggins, Energy Storage, Springer 2010
- 7. N.Mohan, T.M.Undeland, W.P Robbins, *Power Electronics, Converters, Applications & Design*, Wiley India Pvt. Ltd., 2003
- 8. B. K Bose, Modern Power Electronics and AC Drives, Pearson Education 2002

Website Reference:

1. <u>http://nptel.iitm.ac.in</u>: Introduction to Hybrid and Electric Vehicles - Web course

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials		:15 marks
Assignments		:05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
		Theory	Tutorial	Theory	Tutorial	Total	
EEDLO 7033	Industrial Controller (abbreviated as IC)	3	1	3	1	4	

		Examination Scheme						
Course								
code	Course Name	Interna	al Assess	sment	End	Exam	Term	Total
coue		Test 1	Test 2	Δνα	Sem.	Duration	Work	Total
		Test I	Test 2	Avg.	Exam	(Hrs.)		
EEDLO 7033	Industrial Controller	20	20	20	80	03	25	125

	• To provide knowledge level needed for PLC programming and operation.
	• To train the students to create ladder diagram from process control
Course	descriptions.
Objectives	• To provide with detailed knowledge f various terms and operation
	techniques of PID controllers.
	• To make the students understand the various methods of PID tuning
	manually and practically.
	Students will be able to
	• Understand significance of P, I and D controlled techniques,
	disturbance rejection and reference tracking of PI and PD controllers
	and fuzzy logic implementation.
	• Understand the various manual tuning methods of PID controllers and
	their design.
Course	• Understand the common notation of industrial PID and digital PID and
Outcomes	learn various issues in implementation of industrial PID.
	• Ability to represent various components of PLC in a block diagram and
	understand the different type of I/O devices that can be connected to
	PLC.
	• Understand the instruction set of PLC and analyse the given problem
	statement to develop a ladder logic for it.
	• Analyse the various types of I/O modules of PLC.

Module	Contents	Hours					
1	Introduction to controllers Principles: Control modes, on-off control,	10					
	proportional control, proportional -integral control, proportional						
	derivative control, proportional integrator derivative control, selection of						
	controllers structure, disturbance rejection and reference tracking with						
	proportional, Integral, Proportional and integrator, proportional and						
	derivative and PID with the help of first order model. Introduction to						
	fuzzy logic, fuzzy sets, memberships function, a fuzzy logic application,						
2	PID controller tuning method: Understanding PID tuning procedure,	05					
	Manual tuning methods, PID controller design by pole placement,						
	oscillation and quarter amplitude oscillation method, process reaction						

	curve PID tuning, damped decay PID tuning, the relay experiment	
3	The practical aspect of PID tuning: Understanding common notation	05
	for industrial PID controllers, Industrial PID control technology, the	
	issues in implementing the industrial PID controller, integral windup and	
	antiwindup circuits, implementing the derivative terms, industrial PID	
	controller structure, different form of industrial PID controllers, reverse	
	acting controllers, digital PID control	
4	Introduction to programmable controller: Industrial motor control	06
	and starter circuit, building a ladder diagram, PLC Block diagram and	
	components of PLC, rack assembly, power supply, PLC programming	
	unit, input/ output section, processor unit, addressing, relationship to	
	data file addresses to I/O module	
5	Fundamental PLC Programming: PLC program execution, Ladder	05
	diagram programming language, ladder diagram programming, relay	
	logic instructions, timer instructions, counter instructions, Data	
	manipulation instructions, arithmetic instructions, writing small program	
	based on above instruction	
6	Advanced programming, PLC interfacing, troubleshooting:	05
	Introduction to Jump command, data manipulation, programmable	
	controller interfacing discrete input/output module, troubleshooting I/O	
	interfaces, analog input and output signals, special purpose module,	
	troubleshooting programmable controllers	

Text Books:

- 1. Industrial Control Electronics, Terry Bartelt, Delmar Thomson Learning
- 2. Control Engineering An introductory course, Jacqueline Wilkie, Michael A Johnson, Reza Katebi, Palgrave
- 3. Process control instrumentation technology, Curtis D Johnson, Pearson education
- 4. Programmable Logic controller, Dunning

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2).

The distribution of marks for term work shall be as follows:

Tutorials	:15 marks
l'utorials	:15 marks

Assignments :05 m	arks
-------------------	------

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned			
		Theory	Tutorial	Theory	Tutorial	Total	
EEDLO 7034	Power Quality (abbreviated as PQ)	3	1	3	1	4	

		Examination Scheme						
Course	Course Name	Theory						
Course		Internal Assessment			End	Exam	Term	Total
coue		Toot 1	Tost 2	Aug	Sem.	Duration	Work	TOtal
		Test I	Test 2	Avg.	Exam	(Hrs.)		
EEDLO 7034	Power Quality	20	20	20	80	03	25	125

Course	• To impart knowledge on various power quality issues, mitigation				
Objectives	methods and it's monitoring.				
	Students will be able to				
	• Identify various power quality issues, its causes and effects.				
	• Identify and analyse the harmonics created due to nonlinear load.				
Course	• Learn and analyse the power factor compensation for linear and nonlinear loads.				
Outcomes	• Understand various power quality mitigation techniques.				
	• Identify various power quality issues in distributed generation system.				
	• Understand power quality measuring equipment and monitoring standards.				

Module	Contents	Hours
1	Introduction:	06
	Overview of Power Quality-Transients, long duration voltage variation,	
	short duration voltage variation, voltage imbalance, waveform	
	distortion, power frequency variations, power quality standards.	
2	Harmonics and Indices:	12
	Harmonic distortion, voltage versus current distortion, harmonics and	
	transients, harmonic indices (Numerical to be covered on all indices),	
	harmonic sources from commercial loads and industrial loadsalong with	
	its typical current waveforms, Locating harmonic sources, System	
	response characteristics, effects of harmonic distortion, Inter-harmonics.	
3	Power Factor Compensation:	10
	Linear circuits with Sinusoidal supply-Basic relationship, complex	
	power, apparent power and powerfactor, power factor compensation in	
	linear sinusoidal circuits, Nonlinear circuits with sinusoidal supply-	
	Basic relationship, complex power, apparent power and power factor,	
	Power factor compensation in linear and non-linear circuits with	
	sinusoidal supply- Problems related to power factor calculations	
	included.	
4	Power Quality Mitigation Techniques:	06
	Passive Filters, Shunt Active filters, Series Active Filters, Unified Power	
	Quality Compensators.	

5	Distributed Generation and Power Quality:	08
	DG Technologies, Interface to the Utility System, Power Quality Issues,	
	Operating Conflicts, Interconnection Standards.	
6	Power Quality Monitoring:	06
	Monitoring Considerations, Power Quality Measurement Equipment,	
	Assessment of Power Quality Measurement Data, Application of	
	Intelligent Systems, Power Quality Monitoring Standards.	

Text Books:

- 1. Power System Quality Assessment, J.Arrillaga, N.R.Watson, S.Chen
- 2. Electric Power Systems and Quality, Roger C. Dugan, Mark F. McGranaghan, H.WayneBeaty
- 3. Power Quality Enhancement using Custom Devices, Arindam Gosh, Gerard Ledwich
- 4. Power Electronics, Ned Mohan, Undeland, Robbins, John Wiley Publication
- 5. Power System Analysis- Short Circuit Load Flow and Harmonics, J.C.Das.
- 6. Understanding Power Quality Problems, Voltage Sag and Interruptions, Math H.J.Bollen
- 7. Energy flow and power factor in non-sinusoidal circuits., W. Shepherd and P. Zand, I
- 8. Cambridge university press

Reference Books:

- 1. Power System Harmonics, Jos Arrillaga, Neville R Watson
- 2. Electric Power Quality, G.T.Heydt
- 3. IEEE-519 standard

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7011	Product Lifecycle Management (abbreviated as PLM)	3	-	3	-	3			

	Course Name	Examination Scheme								
Course										
Course		Internal Assessment			End	Exam	Term	Total		
coue		Toot 1	Tost 2	Aug	Sem.	Duration	Work	Total		
		Test I	Test 2	Avg.	Exam	(Hrs.)				
II 07011	Product Lifecycle	20	20	20	80	03		100		
ILO/011	Management	20	20	20	80	05	-	100		

	• To familiarize the students with the need, benefits and components of					
	PLM					
Course	• To acquaint students with Product Data Management & PLM strategies					
Objectives	• To give insights into new product development program and guidelines					
	for designing and developing a product					
	• To familiarize the students with Virtual Product Development					
	Student will be able to					
	• Gain knowledge about phases of PLM, PLM strategies and					
	methodology for PLM feasibility study and PDM implementation.					
G	• Illustrate various approaches and techniques for designing and					
Course	developing products.					
Outcomes	• Apply product engineering guidelines / thumb rules in designing					
	products for moulding, machining, sheet metal working etc.					
	• Acquire knowledge in anniving virtual product development tools for					
	• Acquire knowledge in applying virtual product development tools for					
	components, machining and manufacturing plan					

Module	Contents	Hours						
1	Introduction to Product Lifecycle Management (PLM):Product	12						
	Lifecycle Management (PLM), Need for PLM, Product Lifecycle							
	Phases, Opportunities of Globalization, Pre-PLM Environment, PLM							
	Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM,							
	Focus and Application, A PLM Project, Starting the PLM Initiative,							
	PLM Applications							
	PLM Strategies: Industrial strategies, Strategy elements, its							
	identification, selection and implementation, Developing PLM Vision							
	and PLM Strategy, Change management for PLM							
2	Product Design: Product Design and Development Process, Engineering	09						
	Design, Organization and Decomposition in Product Design, Typologies							
	of Design Process Models, Reference Model, Product Design in the							
	Context of the Product Development Process, Relation with the							
	Development Process Planning Phase, Relation with the Post design							
	Planning Phase, Methodological Evolution in Product Design,							
	Concurrent Engineering, Characteristic Features of Concurrent							

	Engineering, Concurrent Engineering and Life Cycle Approach, New	
	Product Development (NPD) and Strategies, Product Configuration and	
	Variant Management, The Design for X System, Objective Properties	
	and Design for X Tools, Choice of Design for X Tools and Their Use in	
	the Design Process	
3	Product Data Management (PDM): Product and Product Data, PDM	06
	systems and importance, Components of PDM, Reason for implementing	
	a PDM system, financial justification of PDM, barriers to PDM	
	implementation	
4	Virtual Product Development Tools: For components, machines, and	06
	manufacturing plants, 3D CAD systems and realistic rendering	
	techniques, Digital mock-up, Model building, Model analysis, Modeling	
	and simulations in Product Design, Examples/Case studies	
5	Integration of Environmental Aspects in Product Design: Sustainable	06
	Development, Design for Environment, Need for Life Cycle	
	Environmental Strategies, Useful Life Extension Strategies, End-of-Life	
	Strategies, Introduction of Environmental Strategies into the Design	
	Process, Life Cycle Environmental Strategies and Considerations for	
	Product Design	
6	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and	06
	Framework of Life Cycle Assessment, Phases of LCA in ISO Standards,	
	Fields of Application and Limitations of Life Cycle Assessment, Cost	
	Analysis and the Life Cycle Approach, General Framework for LCCA,	
	Evolution of Models for Product Life Cycle Cost Analysis	

Reference Books:

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, ImmonenAnselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
IL07012	Reliability Engineering (abbreviated as RE)	3	-	3	-	3		

Course	Course Name	Examination Scheme							
code		Internal Assessment			End	Exam	Term	Total	
couc		Toot 1	Tost 2	Aug	Sem.	Duration	Work	Total	
		1051 1	Test 2	Avg.	Exam	(Hrs.)			
ILO7012	Reliability Engineering	20	20	20	80	03	-	100	

Course Objectives	 To familiarize the students with various aspects of probability theory To acquaint the students with reliability and its concepts To introduce the students to methods of estimating the system reliability of simple and complex systems To understand the various aspects of Maintainability, Availability and EMEA procedure
Course Outcomes	 Student will be able to Understand and apply the concept of Probability to engineering problems Apply various reliability concepts to calculate different reliability parameters Estimate the system reliability of simple and complex systems Carry out a Failure Mode Effect and Criticality Analysis

Module	Contents	Hours					
1	Probability theory: Probability: Standard definitions and concepts;	10					
	Conditional Probability, Baye's Theorem.						
	Probability Distributions: Central tendency and Dispersion; Binomial,						
	Normal, Poisson, Weibull, Exponential, relations between them and						
	their significance.						
	Measures of Dispersion: Mean, Median, Mode, Range, Mean						
	Deviation, Standard Deviation, Variance, Skewness and Kurtosis.						
2	Reliability Concepts: Reliability definitions, Importance of Reliability,	10					
	Quality Assurance and Reliability, Bath Tub Curve.						
	Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean						
	Time To Failure (MTTF), MTBF, Reliability Functions.						
	Reliability Hazard Models: Constant Failure Rate, Linearly increasing,						
	Time Dependent Failure Rate, Weibull Model. Distribution functions						
	and reliability analysis.						
3	System Reliability	05					
	System Configurations: Series, parallel, mixed configuration, k out of n						
	structure, Complex systems.						
4	Reliability Improvement	10					
	Redundancy Techniques: Element redundancy, Unit redundancy,						

	Standby redundancies. Markov analysis.	
	System Reliability Analysis - Enumeration method, Cut-set method,	
	Success	
	Path method, Decomposition method.	
5	Maintainability and Availability	05
	System downtime, Design for Maintainability: Maintenance	
	requirements, Design methods: Fault Isolation and self-diagnostics,	
	Parts standardization and Interchangeability, Modularization and	
	Accessibility, Repair Vs Replacement.	
	Availability – qualitative aspects.	
6	Failure Mode, Effects and Criticality Analysis: Failure mode effects	05
	analysis, severity/criticality analysis, FMECA examples. Fault tree	
	construction, basic symbols, development of functional reliability block	
	diagram, Fault tree analysis and Event tree Analysis	

Reference Books:

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7013	Management Information System (abbreviated as MIS)	3	-	3	-	3			

		Examination Scheme							
Course									
code	Course Name	Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
	Management								
ILO7013	Information	20	20	20	80	03	-	100	
	System								

	• The course is blend of Management and Technical field.
	• Discuss the roles played by information technology in today's business
	and define various technology architectures on which information
	systems are built
C.	• Define and analyze typical functional information systems and identify
Course	how they meet the needs of the firm to deliver efficiency and
Objectives	competitive advantage
	• Identify the basic steps in systems development
	• Define and analyze various MIS management responsibilities, including
	planning, budgeting, project management, and personnel management
	• Discuss critical ethical and social issues in information systems
	Student will be able to
	 Explain how information systems Transform Business
	• Identify the impact information systems have on an organization
Course	• Describe IT infrastructure and its components and its current trends
Outcomes	• Understand the principal tools and technologies for accessing
Outcomes	information from databases to improve business performance and
	decision making
	• Identify the types of systems used for enterprise-wide knowledge
	management and how they provide value for businesses

Module	Contents	Hours
1	Introduction To Information Systems (IS): Computer Based Information	7
	Systems, Impact of IT on organizations, Importance of IS to Society.	
	Organizational Strategy, Competitive Advantages and IS.	
2	Data and Knowledge Management: Database Approach, Big Data, Data	9
	warehouse and Data Marts, Knowledge Management.	
	Business intelligence (BI): Managers and Decision Making, BI for Data	
	analysis and Presenting Results	

3	Ethical issues and Privacy: Information Security. Threat to IS, and	6
	Security Controls	
4	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping,	7
	Marketing, Operational and Analytic CRM, E-business and E-	
	commerce – B2B B2C. Mobile commerce.	
5	Computer Networks Wired and Wireless technology, Pervasive	6
	computing, Cloud computing model.	
6	Information System within Organization: Transaction Processing	10
	Systems, Functional Area Information System, ERP and ERP support of	
	Business Process.	
	Acquiring Information Systems and Applications: Various System	
	development life cycle models.	

Reference Books:

- 1. Management Information Systems: Kelly Rainer, Brad Prince by Wiley
- 2. Management Information Systems: Managing the Digital Firm (10th Edition). K.C. Laudon and J.P. Laudon, Prentice Hall, 2007.
- 3. Managing Information Systems: Strategy and Organization, D. Boddy, A. Boonstra, Prentice Hall, 2008

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
IL07014	Design of Experiments (abbreviated as DoE)	3	-	3	-	3		

		Examination Scheme							
Course	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
		Teat 1	Test)	٨٠٠٩	Sem.	Duration	Work	Total	
		Test I	Test 2	Avg.	Exam	(Hrs.)			
ILO7014	Design of Experiments	20	20	20	80	03	-	100	

	1. To understand the issues and principles of Design of Experiments
Course	(DOE).
Objectives	2. To list the guidelines for designing experiments.
Objectives	3. To become familiar with methodologies that can be used in conjunction
	with experimental designs for robustness and optimization
	Student will be able to
Course	• Plan data collection, to turn data into information and to make decisions
Outcomes	that lead to appropriate action.
	• Apply the methods taught to real life situations.
	• Plan, analyze, and interpret the results of experiments

Module	Contents	Hours
1	Introduction: Strategy of Experimentation, Typical Applications of	6
	Experimental Design, Guidelines for Designing Experiments, Response	
	Surface Methodology.	
2	Fitting Regression Models: Linear Regression Models, Estimation of	8
	the Parameters in Linear Regression Models, Hypothesis Testing in	
	Multiple Regression, Confidence Intervals in Multiple Regression,	
	Prediction of new response observation, Regression model diagnostics,	
	Testing for lack of fit.	
3	Two-Level Factorial Designs: The 2^2 Design, The 2^3 Design, The	7
	General 2^k Design, A Single Replicate of the 2^k Design, The Addition of	
	Center Points to the 2 ^k Design, Blocking in the 2 ^k Factorial Design, Split-	
	Plot Designs.	
4	Two-Level Fractional Factorial Designs: The One-Half Fraction of the	7
	2^{k} Design, The One-Quarter Fraction of the 2^{k} Design, The General 2^{k-p}	
	Fractional Factorial Design, Resolution III Designs, Resolution IV and V	
	Designs, Fractional Factorial Split-Plot Designs.	
5	Conducting Tests: Testing Logistics, Statistical aspects of conducting	7
	tests, Characteristics of good and bad data sets, Example experiments,	
	Attribute Vs Variable data sets.	
6	Taguchi Approach: Crossed Array Designs and Signal-to-Noise Ratios,	4
	Analysis Methods, Robust design examples.	

Reference Books:

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Philip J Ross, "Taguchi Technique for Quality Engineering," McGraw Hill.
- 7. Madhav S Phadake, "Quality Engineering using Robust Design," Prentice Hall.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
IL07015	Operation Research (abbreviated as OR)	3	-	3	-	3		

Course		Examination Scheme						
	Course Name	Theory						
		Internal Assessment			End	Exam	Term	Total
coue		Test 1	Test 2	Aug	Sem.	Duration	Work	Total
		Test I Test Z	Avg.	Exam	(Hrs.)			
ILO7015	Operation Research	20	20	20	80	03	-	100

	• Formulate a real-world problem as a mathematical programming model.
Course	• Understand the mathematical tools that are needed to solve optimization
Objectives	problems.
	• Use mathematical software to solve the proposed models.
	Student will be able to
	• Understand the theoretical workings of the simplex method for linear
	programming and perform iterations of it by hand.
	• Understand the relationship between a linear program and its dual,
	including strong duality and complementary slackness.
	• Perform sensitivity analysis to determine the direction and magnitude of
Course	change of a model's optimal solution as the data change.
Outcomes	• Solve specialized linear programming problems like the transportation
	and assignment problems.
	• Solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
	• Understand the applications of, basic methods for, and challenges in
	integer programming
	• Model a dynamic system as a queuing model and compute important
	performance measures

Module	Contents	Hours
1	Introduction to Operations Research: Introduction, Historical	2
	Background, Scope of Operations Research , Features of Operations	
	Research, Phases of Operations Research, Types of Operations Research	
	Models, Operations Research Methodology, Operations Research	
	Techniques and Tools, Structure of the Mathematical Model,	
	Limitations of Operations Research	
2	Linear Programming: Introduction, Linear Programming Problem,	6
	Requirements of LPP, Mathematical Formulation of LPP, Graphical	
	method, Simplex Method Penalty Cost Method or Big M-method, Two	
	Phase Method, Revised simplex method, Duality, Primal – Dual	
	construction, Symmetric and Asymmetric Dual, Weak Duality Theorem,	
	Complimentary Slackness Theorem, Main Duality Theorem, Dual	
	Simplex Method, Sensitivity Analysis	
3	Transportation Problem: Formulation, solution, unbalanced	6

	Transportation problem. Finding basic feasible solutions - Northwest	
	corner rule, least cost method and Vogel's approximation method.	
	Optimality test: the stepping stone method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the	
	Problem, Hungarian Method Algorithm, Processing of n Jobs Through	
	Two Machines and m Machines, Graphical Method of Two Jobs m	
	Machines Problem Routing Problem, Travelling Salesman Problem	
4	Integer Programming Problem: Introduction, Types of Integer	6
	Programming Problems, Gomory's cutting plane Algorithm, Branch and	
	Bound Technique. Introduction to Decomposition algorithms.	
5	Queuing models: queuing systems and structures, single server and	6
	multi-server models, Poisson input, exponential service, constant rate	
	service, finite and infinite population	
6	Simulation: Introduction, Methodology of Simulation, Basic Concepts,	4
	Simulation Procedure, Application of Simulation Monte-Carlo	
	Method: Introduction, Monte-Carlo Simulation, Applications of	
	Simulation, Advantages of Simulation, Limitations of Simulation	
7	Dynamic programming. Characteristics of dynamic programming.	4
	Dynamic programming approach for Priority Management employment	
	smoothening, capital budgeting, Stage Coach/Shortest Path, cargo	
	loading and Reliability problems.	
8	Games Theory. Competitive games, rectangular game, saddle point,	4
	minimax (maximin) method of optimal strategies, value of the game.	
	Solution of games with saddle points, dominance principle. Rectangular	
	games without saddle point – mixed strategy for 2 X 2 games.	
9	Inventory Models: Classical EOQ Models, EOQ Model with Price	4
	Breaks, EOQ with Shortage, Probabilistic EOQ Model,	

Reference Books:

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7016	Cyber Security and Laws (abbreviated as CSL)	3	-	3	-	3			

	Course Name	Examination Scheme							
Course									
course		Internal Assessment			End	Exam	Term	Total	
couc		Toot 1	Tost 2	Ava	Sem.	Duration	Work	Totai	
		I est I	Test 2	Avg.	Exam	(Hrs.)			
ILO7016	Cyber Security and Laws	20	20	20	80	03	-	100	

Course	• To understand and identify different types cyber crime and cyber law									
Objectives	• To recognized Indian IT Act 2008 and its latest amendments									
Objectives	• To learn various types of security standards compliances									
	Student will be able to									
	• Understand the concept of cyber crime and its effect on outside world									
Course	 Interpret and apply IT law in various legal issues 									
Outcomes	• Distinguish different aspects of cyber law									
	• Apply Information Security Standards compliance during software									
	design and development									

Module	Contents	Hours
1	Introduction to Cybercrime: Cybercrime definition and origins of the	4
	world, Cybercrime and information security, Classifications of	
	cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective	
	on cybercrimes.	
2	Cyber offenses & Cybercrime: How criminal plan the attacks, Social	10
	Engg, Cyber stalking, Cybercafé and Cybercrimes, Botnets, Attack	
	vector, Cloud computing, Proliferation of Mobile and Wireless Devices,	
	Trends in Mobility, Credit Card Frauds in Mobile and Wireless	
	Computing Era, Security Challenges Posed by Mobile Devices, Registry	
	Settings for Mobile Devices, Authentication Service Security, Attacks	
	on Mobile/Cell Phones, Mobile Devices: Security Implications for	
	Organizations, Organizational Measures for Handling Mobile, Devices-	
	Related Security Issues, Organizational Security Policies and Measures	
	in Mobile Computing Era, Laptops	
3	Tools and Methods Used in Cyberline: Phishing, Password Cracking,	6
	Keyloggers and Spywares, Virus and Worms, Steganography, DoS and	
	DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless	
	Networks, Phishing, Identity Theft (ID Theft)	
4	The Concept of Cyberspace: E-Commerce, The Contract Aspects in	8
	Cyber Law ,The Security Aspect of Cyber Law ,The Intellectual	
	Property Aspect in Cyber Law, The Evidence Aspect in Cyber Law	
	, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law,	
	Legal Framework for Electronic Data Interchange Law Relating to	

	Electronic Banking, The Need for an Indian Cyber Law				
5	Indian IT Act.: Cyber Crime and Criminal Justice : Penalties,	8			
	Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its				
	Amendments				
6	Information Security Standard compliances				
	SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.				

Reference Books:

- 1. Nina Godbole, Sunit Belapure, *Cyber Security*, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security &Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primerprofessionals-33538

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7017	Disaster Management and Mitigation Measures (abbreviated as DMMM)	3	-	3	-	3			

		Examination Scheme								
Course										
code	Course Name	Internal Assessment			End	Exam	Term	Total		
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Totai		
					Exam	(Hrs.)				
ILO7017	Disaster									
	Management and	20	20	20	80	03	-	100		
	Mitigation	20								
	Measures									

Course Objectives	 To understand the various types of disaster occurring around the world To identify extent and damaging capacity of a disaster To study and understand the means of losses and methods to overcome /minimize it. To understand role of individual and various organization during and after disaster To know warning systems, their implementation and based on this to initiate training to a laymen
	 To understand application of GIS in the field of disaster management To understand the emergency government response structures before, during and after disaster
	Student will be able to
	• Understand natural as well as manmade disaster and their extent and possible effects on the economy.
Course Outcomes	• Planning of national importance structures based upon the previous history.
	• Understand government policies, acts and various organizational structure associated with an emergency.
	• Know the simple do's and don'ts in such extreme events and act accordingly

Module	Contents	Hours						
1	Introduction: Definition of Disaster, hazard, global and Indian scenario,	03						
	general perspective, importance of study in human life, Direct and							
	indirect effects of disasters, long term effects of disasters. Introduction							
	to global warming and climate change.							
2	Natural Disaster and Manmade disasters: Natural Disaster: Meaning and	06						
	nature of natural disaster, Flood, Flash flood, drought, cloud burst,							
	Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow,							
	Cyclone, Storm, Storm Surge, climate change, global warming, sea							
	level rise, ozone depletion . Manmade Disasters: Chemical, Industrial,							

	Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters	
3	Disaster Management, Policy and Administration: Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. Policy and administration: Importance and principles of disaster management policies, command and co-ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	06
4	Institutional Framework for Disaster Management in India: Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	06
5	Financing Relief Measures: Ways to raise finance for relief expenditure, Role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. International relief aid agencies and their role in extreme events.	09
6	Preventive and Mitigation Measures: Pre-disaster, during disaster and post-disaster measures in some events in general, Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication. Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. Do's and don'ts in case of disasters and effective implementation of relief aids.	06

Reference Books:

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P. Lo Albert, K.W. Yonng Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7018	Energy Audit and Management (abbreviated as EAM)	3	-	3	-	3			

Course	Course Name	Examination Scheme								
		Internal Assessment			End	Exam	Term	Total		
coue		Teat 1	Test 2	Aug	Sem.	Duration	Work	Total		
		Test I	Test 2	Avg.	Exam	(Hrs.)				
ILO7018	Energy Audit and Management	20	20	20	80	03	-	100		

Course Objectives	 To understand the importance of energy security for sustainable development and the fundamentals of energy conservation. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management To relate the data collected during performance evaluation of systems for identification of energy saving opportunities
Course Outcomes	 Student will be able to To identify and describe present state of energy security and its importance. To identify and describe the basic principles and methodologies adopted in energy audit of an utility. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities. To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Contents	Hours
1	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy	4
	Sector Reforms, Energy Security, Energy Conservation and its	
	Importance, Energy Conservation Act-2001 and its Features. Basics of	
	Energy and its various forms, Material and Energy balance	
2	Energy Audit Principles: Definition, Energy audit- need, Types of	8
	energy audit, Energy management (audit) approach-understanding	
	energy costs, Bench marking, Energy performance, Matching energy use	
	to requirement, Maximizing system efficiencies, Optimizing the input	
	energy requirements, Fuel and energy substitution. Elements of	
	monitoring& targeting; Energy audit Instruments; Data and information-	
	analysis. Financial analysis techniques: Simple payback period, NPV,	
	Return on investment (ROI), Internal rate of return (IRR)	
3	Energy Management and Energy Conservation in Electrical	10
	System: Electricity billing, Electrical load management and maximum	

	demand Control; Power factor improvement, Energy efficient	
	equipments and appliances, star ratings. Energy efficiency measures in	
	lighting system, Lighting control: Occupancy sensors, daylight	
	integration, and use of intelligent controllers.	
	Energy conservation opportunities in: water pumps, industrial drives,	
	induction motors, motor retrofitting, soft starters, variable speed drives.	L
4	Energy Management and Energy Conservation in Thermal	10
	Systems: Review of different thermal loads; Energy conservation	
	opportunities in: Steam distribution system, Assessment of steam	
	distribution losses, Steam leakages, Steam trapping, Condensate and	
	flash steam recovery system.	
	General fuel economy measures in Boilers and furnaces, Waste heat	
	recovery use of insulation- types and application. HVAC system:	
	Coefficient of performance, Capacity, factors affecting Refrigeration	
	and Air Conditioning system performance and savings opportunities	1
5	Energy Performance Assessment: On site Performance evaluation	4
	techniques, Case studies based on: Motors and variable speed drive,	
	pumps, HVAC system calculations; Lighting System: Installed Load	
	Efficacy Ratio (ILER) method, Financial Analysis.	
6	Energy conservation in Buildings: Energy Conservation Building	3
	Codes (ECBC): Green Building, LEED rating, Application of Non-	
	Conventional and Renewable Energy Sources	1

Reference Books:

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course	se Course Name		g Scheme et Hours)	Cree	dits Assigne	ed	
Code		Theory	Tutorial	Theory	Tutorial	Total	
ILO7019	Development Engineering (abbreviated as DE)	3	-	3	-	3	

		Examination Scheme							
Course	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
II 07010	Development	20	20	20	80	02		100	
IL07019	Engineering	20	20	20	80	03	-	100	

Course Objectives	 To understand the characteristics of rural Society and the Scope, Nature and Constraints of rural To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas An exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life' in the context of work life and the personal life of modern Indian professionals To understand the Nature and Type of Human Values relevant to Planning Lexititations
Course Outcomes	 Student will be able to Apply knowledge for Rural Development Apply knowledge for Management Issues. Apply knowledge for Initiatives and Strategies. Develop acumen for higher education and research. Moster the set of working in group of different nature.
	 Master the art of working in group of different nature. Develop confidence to take up rural project activities independently.

Module	Contents	Hours
1	Introduction to Rural Development Meaning, nature and scope of	08
	development; Nature of rural society in India; Hierarchy of settlements;	
	Social, economic and ecological constraints for rural development.	
	Roots of Rural Development in India Rural reconstruction and	
	Sarvodaya programme before independence; Impact of voluntary effort	
	and Sarvodaya Movement on rural development; Constitutional	
	direction, directive principles; Panchayati Raj - beginning of planning	
	and community development; National extension services.	
2	Post-Independence rural Development Balwant Rai Mehta Committee -	04
	three tier system of rural local. Government; Need and scope for	
	people's participation and Panchayati Raj; Ashok Mehta Committee -	
	linkage between Panchayati Raj, participation and rural development.	
3	Rural Development Initiatives in Five Year Plans Five Year Plans and	06
	Rural Development; Planning process at National, State, Regional and	
	District levels; Planning, development, implementing and monitoring	

	organizations and agencies; Urban and rural interface - integrated approach and local plans; Development initiatives and their convergence; Special component plan and sub-plan for the weaker section; Micro-eco zones; Data base for local planning; Need for decentralized planning; Sustainable rural development.	
4	Post 73rd Amendment Scenario 73rd Constitution Amendment Act, including - XI schedule, devolution of powers, functions and finance; Panchayati Raj institutions - organizational linkages; Recent changes in rural local planning; Gram Sabha - revitalized Panchayati Raj; Institutionalization; resource mapping, resource mobilization including social mobilization; Information Technology and rural planning; Need for further amendments.	04
5	Values and Science and Technology Material development and its values; the challenge of science and technology; Values in planning profession, research and education. Types of Values Psychological values — integrated personality; mental health; Societal values — the modern search for a good society; justice, democracy, rule of law, values in the Indian constitution; Aesthetic values — perception and enjoyment of beauty; Moral and ethical values; nature of moral judgment; Spiritual values; different concepts; secular spirituality; Relative and absolute values; Human values — humanism and human values; human rights; human values as freedom, creativity, love and wisdom.	10
6	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility; Work ethics; Professional ethics; Ethics in planning profession, research and education	04

Reference Books:

1. ITPI, Village Planning and Rural Development, ITPI, New Delhi

- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi

4. Planning Commission, Five Year Plans, Planning Commission

5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission

New Delhi

6. Planning Guide to Beginners

7. Weaver, R.C., The Urban Complex, Doubleday.

8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.

9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.

10. Watson, V., Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and

Practice, Vol. 4, No.4, pp.395 – 407

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course	Course Course Name		Teaching Scheme (Contact Hours)		Credits Assigned		
Code		Theory	Practical	Theory	Practical	Total	
EEL701	Simulation Lab -III (abbreviated as Sim. Lab- III)	-	2	-	1	1	

Course Code		Examination Scheme							
	Course Name	Theory				Practical			
		Internal Assessment End			End	Torm	Pract.		Total
		Test 1 Test 2	Δνα	Sem.	Work	and	Oral		
		1050 1	1050 2	Avg.	Exam	WOIK	Oral		
EEL701	Simulation	-	-	-	-	25		25	50
	Lab-III								

Course	• To impart knowledge on coding and simulation of electrical systems.
Objectives	
	Students will be able
Course	• To code or simulate HVDCT systems for its analysis.
Outcomes	• To code or simulate power system for its analysis.
	• To code or simulate electrical drives for its analysis.

Syllabus: Same as that of Courses of semester VII

Suggested List of Laboratory Experiment:

1. (A) Simulation of full wave bridge rectifier.

(i) with R-load, R=20 Ω , at $\alpha = (90 - \text{Roll No.})$

(ii) with R-L-load, R=20 Ω , L=100mH, at α =(90 – Roll No.)

(B) Harmonic analysis of ac and dc side voltage and current of full wave bridge rectifier.

(i) with R-load, R=20 Ω , at α =(90 – Roll No.)

(ii) with R-L-load, R=20 Ω , L=100mH, at α =(90 – Roll No.)

2. (A) Simulation of full wave bridge rectifier with source inductance (Ls=10mH).

(a) with R-load, R=20 Ω ,at α =(90 + Roll No.)

(b) with R-L-load, R=20 Ω , L=100mH, at α =(90 + Roll No.)

(B) Harmonic analysis of ac and dc side voltage and current of full wave bridge rectifier with source inductance (Ls = 10mH).

(a) with R-load, R=20 Ω ,at α =(90 + Roll No.)

(b) with R-L-load, R=20 Ω , L=100mH, at α =(90 + Roll No.)

3. Simulation of 6-pulse converter in rectifier mode.

(a) with R-load, R=20 Ω ,at α =(90 - Roll No.)

(b) with R-L-load, R=20 Ω , L=100mH, at α =(90 - Roll No.)

4. Harmonic analysis of ac and dc side voltage and current of 6-pulse converter in rectifier mode.

(a) with R-load, R=20 Ω , at α =(90 - Roll No.)

(b) with R-L-load, R=20 Ω , L=100mH, at α =(90 - Roll No.)

5. Simulation of 6-pulse converter in inverter mode.

(a) with R-load, R=20 Ω , at α =1100 & α =1600

(b) with R-L-load, R=20 Ω , L=100mH, at $\alpha {=}1100$ & $\alpha {=}1600$

6. Harmonic analysis of ac and dc side voltage and current of 6-pulse converter in inverter mode.

(a) with R-load, R=20 Ω , at α =1100 & α =1600

(b) with R-L-load, R=20 Ω , L=100mH, at α =1100 & α =1600

7. Simulation of 12-pulse converter in inverter mode.

(a) with R-load, R=20 Ω ,at α = 00

(b) with R-L-load, R=20 Ω , L=100mH, at α =00

8. Harmonic analysis of ac and dc side voltage and current of 12-pulse converter in inverter mode.

(a) with R-load, R=20 Ω ,at α =00

(b) with R-L-load, R=20 Ω , L=100mH, at $\alpha {=} 00$

9. Simulation of 3-phase SPWM inverter and its harmonic analysis.

10. Simulation of Homopolar / Bipolar HVDC link.

- 11. Simulation of Misfire is 6-pulse converter.
- 12. Simulation of 'Symmetrical pulse control'.
- 13. Simulation of IGBT based converters.
- 14. Simulation of Single commutation failure.
- 15. Simulation of Double commutation failure.
- 16. Simulation of Individual phase control.
- 17. Simulation of Equidistant pulse control.
- 18. Load flow analysis of power system
- 19. Optimum generation scheduling
- 20. Braking of dc machines
- 21. Braking of ac machines

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum eight simulations. The distribution of marks shall be as follows:

Simulation Performance	:10 marks
Journal	:10 marks
Attendance (Practical)	:05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.

University of Mumbai								
Course Code	Course Name	Teachin (Conta	ng Scheme ct Hours)	Credits Assigned				
		Theory	Practical	Theory	Practical	Total		
EEL702	Drives and Control Lab (abbreviated as D&C Lab)	-	2	-	1	1		

Course Code	Course Name	Examination Scheme							
		Theory				Practical			
		Internal Assessment			End	Torm	Pract.		Total
		Test 1	Test 2	Avg.	Sem.	Sem. Exam Work	and	Oral	
					Exam		Oral		
EEL702	Drive and	_	_	_	_	25	25	_	50
	Control Lab					25	25		50

Course Objectives	• To impart knowledge on electrical drives and its control.
Course Outcomes	 Students will be able To analyse the dynamic performance of electrical ac and dc drives. To analyse the dynamics of braking of electrical ac and dc motors.

Syllabus: Same as that of Course Drives and Control (EEC702)

Suggested List of Laboratory Experiment:

- 1. Measurement of Moment of Inertia by Retardation test
- 2. Study of different Speed Sensing, Current Sensing and Voltage Sensing devices or practical closed loop controlled drive.
- 3. Single phase fully-controlled rectifier fed DC drive/Single phase half controlled rectifier fed DC drive / Three phase fully-controlled rectifier fed DC drive/ Three phase half controlled rectifier fed DC drive/Dual Converter controlled fed DC drive. (Simulation/ Hardware)
- 4. Chopper Controlled DC drive. (Simulation/ Hardware)
- 5. Closed loop Control of DC drive.
- 6. Simulation of Starting of DC motor (Conventional resistance start and any one Soft start scheme)
- 7. Dynamic braking, Plugging of DC motor.
- 8. Plugging of three phase Induction Motor.
- 9. V control and V/f control of Induction motor using PWM Inverter.
- 10. Hands on Experience in Programming a general purpose three phase Induction Motor Industrial Drive.
- 11. Demonstration of Vector Control of three phase Induction Motor (Simulation).
- 12. Demonstration of DTC, FOC of three phase Induction Motor (Simulation).

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum eight experiments. The distribution of marks shall be as follows:

Experiments Performance :10 marks Journal :10 marks Attendance (Theory and Practical) :05 marks

Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEC801	Design, Management and Auditing of Electrical System	4	1	4	1	5		
	(abbreviated as DMAES)	4						

Course code	Course Name	Examination Scheme								
		Internal Assessment			End	Exam	Term	Total		
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total		
					Exam	(Hrs.)				
EEC801	Design,									
	Management and	20	20	20	80	03	25	125		
	Auditing of	20	20	20	00	05	25	123		
	Electrical System									

Course	 To give the students basic knowledge of designing electrical distribution network To give the students basic knowledge of electrical energy sudit in the
Objectives	• To give the students basic knowledge of electrical energy audit in the distribution system
Course Outcomes	Students will be able
	• To do sizing, selecting transformer, switchgear and cable as required for distribution system
	• To illustrate Engineering knowledge in energy audit and energy efficient technologies to improve energy efficiency

Module	Contents	Hours				
1	Introduction	5				
	Types of electrical Projects, Types of electrical system, review of					
	components of electrical system, different plans/ drawings in electrical					
	system design, single line diagram in detail, Tendering, Estimation					
2	Design of Power Distribution System	7				
	Different types of distribution systems and selection criteria, Electrical					
	Earthing, Electrical load size, L.F, D.F, future estimates, substation					
	equipment options, design considerations in transformer selection, sizing					
	and specifications, IS standards applicable in above design					
3	Design of Switchgear Protection and Auxiliary system	10				
	Selection of HT/LT switchgears, metering, switchboards and MCC,					
	protection systems, coordination and discrimination. Cables selection					
	and sizing, cable installation and management systems, bus bars design;					
	Basics of selection of emergency/backup supplies, UPS, DG Set,					
	Batteries; Preliminary design of interior lighting system. IS standards					
	applicable in above designs					
4	Energy Monitoring and Targeting:	7				
	Defining monitoring and targeting. Elements of monitoring and					
	Targeting. Analysis techniques for energy optimization, Cumulative Sum of Differences (CUSUM), Electricity billing. Energy Management of Electrical Systems: Electrical load management and maximum demand control, Power factor improvement and its benefit, selection and location of capacitors.					
---	--	----				
	distribution and transformer losses.					
5	Energy Audit: Introduction to Energy Conservation Act 2001 . Energy Audit: Definition,-need, Types of energy audit, Energy Management (audit) approach understanding energy costs, Bench marking, Maximizing system efficiencies, optimizing input energy requirement, fuel and energy substitution. Energy Audit instruments. Electrical Energy Performance Assessment: Motors And Variable Speed Drives, Lighting Systems. Basics of HVAC system assessment for electrical energy usage.	10				
6	Energy Efficient Technologies: Energy efficient BLDC Fans, Smart lighting system for indoor and outdoor applications, Maximum Demand controllers, Automatic Power Factor Controllers, Energy Efficient Motors, Soft starters, Variable Speed Drives, Energy Efficient Transformer. Energy saving potential of each technology. Use of Energy Management system (EMS) and Building Management System (BMS).	9				

Text Books:

1. "Handbook of Electrical Installation Practice" Fourth Edition, by Geofry Stokes, Blackwell Science

2. "Energy-Efficient Electric Motor", Third Edition, By Ali Emadi, New Marcel Dekker, Inc., 2005.

3. "Electrical Energy Efficiency: Technologies And Applications" by Andreas Sumper and Angelo Baggini, John Wiley & Sons, Ltd., 2012

4. "Electrical Calculations and Guidelines for Generating Stations and Industrial Plants" by Thomas E. Baker, CRC Publications, 2012

5. "Electrical Installations Handbook", Third Edition, by Gunter Seip, MCD Verilag, 2000

6. "Electrical Installation Designs", Fourth Edition by Bill Atkinson, Roger Lovegrove and Gary Gundry, John Wiley & Sons, Ltd, 2013.

7. "Handbook of International Electrical Safety Practices", by Princeton Energy Resources International, Scrivener Publishing, 2010.

8. "Designing with Light: Lighting Handbook", by Anil Valia, Lighting System

9. "Energy Management Handbook", by W.C. Turner, John Wiley and sons

10. "Handbook on Energy Audits and Management", by Amit Kumar Tyagi, TERI

11. "Introduction to Efficient Electrical System Design", by Stephen Ayraud and Albert Thumann, The Fairmount Press

Reference Books:

"Energy Auditing Made Simple", by P. Balasubramanian, Seperation Engineers (P) Ltd

2. "Electrical Installation Calculations: for Compliance with BS 7671:200", Fourth Edition, by Mark Coates, Brian Jenkins, John Wiley & Sons, Ltd, 2010

3. "Energy Management Principles", by C.B.Smith, Peragamon Press

4. "Energy Conservation Guidebook", by Dale R.Patrick, Stephon Fadro, E. Richardson, Fairmont Press

5. "Handbook of Energy Audits", by Albert Thumann, William J. Younger, Terry Niehus, CRC Press

Websites:

www.energymanagertraining.com www.bee-india.nic.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials:15 marksAssignments:05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching Scheme (Contact Hours)		Teaching Scheme (Contact Hours)Credits A		dits Assigne	Assigned	
		Theory	Tutorial	Theory	Tutorial	Total		
EEC802	Flexible AC Transmission System (abbreviated as FACTS)	4	-	4	-	4		

				Exa	mination	Scheme		
Course			Theory					
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
		Test 1	Test 2	Ava	Sem.	Duration	Work	Total
		Test I	1051 2	Avg.	Exam	(Hrs.)		
	Flexible AC							
EEC802	Transmission	20	20	20	80	03	-	100
	System							

Course	• To understand the concept of Flexible AC Transmission System
Objectives	• To introduce the operation of various FACTS controllers.
	Student will be able to
Course Outcomes	 Illustrate the aspects of flexible ac transmission system over conventional ac transmission system Analyze the concept of load compensation. Categorize the static shunt and series compensation for transmission line. Outline the concept of voltage and phase angle regulators. Understand unified power flow controllers using circuit diagram and
	• Understand unified power flow controllers using circuit diagram and phasors.

Module	Contents	Hours						
1	FACTS Concepts and General System Considerations: Transmission	08						
	Interconnections, Flow of Power in AC system, What Limits the							
	Loading Capability, Power Flow and Dynamic Stability Considerations							
	of a Transmission Interconnection, Relative Importance of controllable							
	Parameters, Basic Types of FACTS Controllers, Brief Description and							
	Definitions, Benefits from FACTS Technology							
2	Load Compensation: Objectives in load compensation, ideal	12						
	compensator, Practical considerations, Power factor correction and							
	Voltage Regulation in single phase systems, Approximate reactive							
	power characteristics with example, Load compensator as a voltage							
	regulator, Phase balancing and power factor correction of unsymmetrical							
	loads							
3	Static shunt compensators: Objectives of shunt compensation,	10						
	Methods of controllable VAR generation, Variable impedance type							
	static Var generator (TCR,TSR,TSC,FC-TCR), Switching converter type							
	Var generators, basic operating principle							
4	Static series compensation: Objectives of series compensation-	08						
	Variable impedance type series compensation (only GCSC, TSSC and							
	TCSC), Switching converter type series compensation (only SSSC)							

5	Static voltage and phase angle regulators- Objectives of voltage and	06
	phase angle regulators- TCVR and TCPAR, Switching converter based	
	voltage and phase angle regulators	
6	Unified Power Flow Controller (UPFC): Basic operating principle,	04
	Conventional transmission control capabilities	

Text Books:

1. 'Hingorani N.G.. & Gyugi L., "Understanding FACTS : Concepts and Technology of Flexible AC Transmission Systems," Wiley-1EEE Press

2. Timothy J. E. Miller "Reactive power control in Electric Systems," Wiley India Edition.

Reference Books:

1. Yong Hua Song "Flexible AC transmission system" Institution of Electrical Engineers, London

2. Arindam Ghosh and Gerard Ledwich, "Power Quality Enhancement Using Custom Power Devices," Kluwer Academic Publishers

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai										
Course Code	Course Name	Teaching Scheme (Contact Hours)		Teaching Scheme (Contact Hours)		Teaching Scheme (Contact Hours) Credits		dits Assigne	its Assigned	
		Theory	Tutorial	Theory	Tutorial	Total				
EEDLO 8041	Illumination Engineering (abbreviated as IE)	3	1	3	1	4				

				Exa	mination	Scheme		
Course			Theory					
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
coue		Tost 1	Tost 2	Ava	Sem.	Duration	Work	Total
		Test I	Test 2	Avg.	Exam	(Hrs.)		
EEDLO	Illumination	20	20	20	80	03	25	125
8041	Engineering	20	20	20	80	03	23	123

Course Objectives	 To introduce various laws of illumination, lighting parameters, light sources, luminaries and their characteristics to be used for lighting design. To introduce lighting design considerations for interior and exterior applications. To adapt to the LED based solid state lighting with different lighting control technologies and standards.
Course Outcomes	 Student will be able to Identify and describe the various laws of illumination, lighting parameters, light sources, luminaries and their Photometric characteristics. Identify and describe various LED lighting components / subsystems, thermal management and lifetime studies. Formulate and design an Interior Lighting system through standards, design considerations and calculation for different application areas. Formulate and design an Exterior Lighting system through standards, design considerations and calculation for different application areas. Identify and describe different Lighting Control schemes. Identify and describe Solid-State Lighting technology, it's applications in Lighting for health and safety and solar powered schemes.

Module	Contents	Hours
1	Introduction:	03
	Review of Light, Color and Photometry: Laws of illumination,	
	illumination entities. Radiometric and photometric standards,	
	Photometric measurement procedure- assessment of lamp efficacy,	
	Color temperature, Colorimetry- Measurement of CRI, Glare	
2	Lamps and Luminaries:	8
	Lamp: Review of development, construction and characteristics:	-
	Incandescent lamp, Discharge lamps, induction lamp, and LED lamp;	
	LED Lighting Components and Subsystems, OLEDs, light-emitting	
	polymers (LEPs) Thermal Management and Lifetime Studies;	
	Luminaire: optical control, Control gear: ballast, standard and electronic,	
	Luminaries photometry, Luminaire testing procedures	

3	Interior Lighting Design & Calculation:	06
	Objectives, quality and quantity of lighting. Lamp /Luminaire selection	
	and placement, design considerations and calculation. Glare	
	Consideration and control. Indoor lighting design by lumen method, by	
	point by point method. Applications: residential, educational institute,	
	industries, sports centers, commercial premises: retail stores, offices etc.	
	Applicable standards.	
4	Exterior Lighting Design & Calculation:	04
	Exterior lighting system- Road lighting system, Utility area lighting,	
	Sports lighting, Decorative flood lighting. Applicable standards	
5	Lighting Control:	03
	Introduction to Lighting Control, Controls, Selection of Lighting	
	Controls, Design of Lighting Control Scheme, Lighting and LEED, Day-	
	lighting control, Controlling LED Lighting Systems, Smart Lighting	
	Fixtures, Digital Lighting Networks, DMX control. BACnet: Building	
	Automation Standard Protocol.	
6	Solid-State Lighting:	12
	Drivers for LED lamps, standards and regulations, LED luminaries,	
	LED Light Distributions, Indoor Lighting Applications Smart Street	
	Lighting with Remote Monitoring and Control System, Solar Powered	
	LED Lighting, Tunable White Lighting and RGB LED based Colored	
	Lighting.	
	Lighting for health and safety, Circadian Rhythm and Human Centric	
	Lighting.	

Text Books:

- 1. Anil Valia, "Designing With Light A Lighting Handbook" International Lighting Academy
- 2. M. Nisa Khan "Understanding LED Illumination," CRC Press 2013
- 3. Anil Valia, "LED LIGHTING SYSTEMS All you need to know," International Lighting Academy
- 4. National Lighting Code- 2011
- 5. Kao Chen, "Energy Management in Illumination Systems," CRC Press.
- 6. John L. Fetters, "The Hand Book of Lighting Surveys and Audits," CRC Press.

Reference Books:

- 1. Illuminating Engineering Society, "The IES Lighting Handbook", 10th Edition
- 2. J. L. Lindsey and S. C. Dunning, "Applied Illumination Engineering," ThirdEdition, Fairmont Press, 2016
- 3. Lamps and Lighting Edited by J.R.Coaton and A.M.Marsden, 4th Edition
- 4. Lighting for health and safety N.A.Smith, Butterworth-Heimann.
- 5. Human Factors in Lighting Peter R. Boyce, Taylor & Francis.

Website Reference:

1. <u>http://nptel.iitm.ac.in</u>: 'Illumination Engineering' web-course

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2).

The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching Scheme (Contact Hours)		Scheme Hours) Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEDLO 8042	Smart Grid (abbreviated as SG)	3	1	3	1	4		

		Examination Scheme								
Course										
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total		
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Total		
		Test I	Test 2	Avg.	Exam	(Hrs.)				
EEDLO 8042	Smart Grid	20	20	20	80	03	25	125		

Course Objectives	 To impart knowledge of futuristic power grid technology and the path on which development is taking place. To elaborate the fundamentals of various technologies and tools which will 							
	play vital role in formation of the Smart grids in near future.							
	Students will be able							
	• To identify and describe the history and evolvement Smart Crid its features							
• To identify and describe the history and evolvement Smart Grid, it								
	/functions and Barriers							
	• To classify and describe the principles of various Smart Grid enabling Technologies.							
Course	• To evaluate and compare applications of Smart Measurement and							
Outcomes	Monitoring Technologies.							
	• To identify and describe the role Microgrids and Distributed Energy							
	Resources in evolvement of Smartgrid							
	• To Identify and describe the importance of various communication							
	technology used for Smart Grid.							
	• To assess the Power Quality issues and its Management in Smart Grid							

Module	Contents	Hours						
1	Introduction to Smart Grid:	05						
	Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of							
	Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart							
	Grid, Difference between conventional grid & smart grid, Concept of							
	Resilient & Self Healing Grid. Present development & International							
	policies in Smart Grid. Case studies of Smart Grid. CDM opportunities							
	in Smart Grid.							
2	Smart Grid enabling Technologies:	08						
	Introduction to Smart Meters, Real Time Prizing, Smart Appliances,							
	Automatic Meter Reading(AMR), Outage Management System (OMS),							
	Plug in Hybrid Electric Vehicle (PHEV), Vehicle to Grid, Smart							
	Sensors, Home & Building Automation.							
3	Smart Measurement and Monitoring Technologies:	05						
	Smart Substations, Substation Automation, Feeder Automation.							
	Geographic Information System (GIS), Intelligent Electronic Devices							
	(IED) & their application for monitoring & protection, Wide Area							

	Measurement System(WAMS), Phase Measurement Unit(PMU).	
4	Microgrids and Distributed Energy Resources:	08
	Concept of microgrid, need & applications of microgrid, formation of	
	microgrid, Issues of interconnection, protection & control of microgrid.	
	Review of fundamentals and Integration of renewable energy sources.	
	Storage like Battery, Pumped Hydro. Microgrid and Smart grid	
	comparison.	
5	Power Quality Management in Smart Grid:	05
	Power Quality & EMC in Smart Grid, Power Quality issues of Grid	
	connected Renewable Energy Sources, Power Quality Conditioners for	
	Smart Grid, Web based Power Quality monitoring.	
6	Communication Technology for Smart Grid:	05
	Home Area Network (HAN), Neighborhood Area Network (NAN),	
	Wide Area Network (WAN). ZigBee, GPS; Wireless Mesh Network,	
	Basics of CLOUD Computing & Cyber Security for Smart Grid.	

Text Books:

- 1. James Momoh, "Smart Grid:Fundamentals of Design and Analysis," IEEE Press and Wiley Publications, 2015
- 2. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable Energy in Electric Power Systems", Wiley
- 3. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response" CRC Press
- 4. J. C. Sabonnadière, N. Hadjsaïd, "Smart Grids", Wiley Blackwell
- 5. L.T.Berger and K. Iniewski, "Smart Grid Applications, Communications and Security," Wiley Publications , 2015

Reference Books:

- 1. K. Liyanage, Jianzhong Wu, A. Yokoyama, Nick Jenkins J.Ekanayake, "Smart Grid: Technology and Applications," Wiley Publications , 2015
- Stuart Borlase, "Smart Grids: Infrastructure, Technology, and Solutions," CRC Press, 2012
- 3. Yang Xiao, "Communication and Networking in Smart Grids," CRC Press, 2012
- 4. H. T. Mouftah, and M. Erol-Kantarci, "Smart Grid: Networking, Data Management, and Business Models," CRC Press, 2016

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows: Tutorials :15 marks

Assignments	:05 marks
Assignments	:05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
EEDLO 8043	Power System Modeling and Control (abbreviated as PSMC)	3	1	3	1	4			

		Examination Scheme							
Course									
code	Course Name	Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
EEDLO 8043	Power System Modeling and Control	20	20	20	80	03	25	125	

Course	• To impart knowledge power system stability and control.
Objectives	• To elaborate the fundamentals of electrical machines and do the modeling of
Objectives	various components of power system.
	Students will be able
Course	• To understand the basic concept of stability and its types
Course	• To evaluate the models of synchronous machine, induction machine,
Outcomes	excitation system and load.
	• To analyse the dynamic stability of power system.

Module	Contents	Hours
1	Introduction	04
	Basic Concepts and Definitions:-Rotor angle stability, voltage Stability	
	and voltage collapse, Mid term and long term stability, Classification of	
	stability, Historical review of stability problem in India and world.	
2	Synchronous Machine Modeling and Representation	10
	Basic equations of synchronous machine, dqo transformation, Per unit-	
	voltage- flux- torque- power equations and reactance, Equivalent circuit	
	d-q axis, Voltage current flux linkage relation- phasor representation-	
	rotor angle-steady state equivalent circuit. Three phase short circuit,	
	Magnetic saturation and representation Simplifications for large scale	
	studies, Constant flux linkage model.	
3	Modeling Of Other Components	8
	Basic load modeling concept, Modeling of induction motor, Acquisition	
	of load model parameters	
4	Excitation System Modeling and Control	10
	Excitation system requirement, Elements of excitation system, Types of	
	excitation system, Dynamic performance measures, Control and	
	protective functions, Basic elements of different types of excitation	
	system.	
5	Small Signal Stability (SSS) and Control	10
	Fundamental concept of stability of dynamic system, Eigen properties of	
	state matrix, SSS of single machine infinite bus system, Effect of AVR	

	on synchronizing and damping torque, Power system stabilizer, SSS of multi- machine system, Special techniques to analyze large system, Characteristics.	
6	Voltage Stability and Control	06
	Basic concepts, Voltage collapse, Voltage stability analysis, Prevention	
	of voltage collapse. Counter measure for Sub Synchronous Resonance	

Text Books:

- 1. Prabha Kundur, Power System Stability and Control, TMH Publication, 2008
- 2. Padiyar K R, Power System Dynamics- Stability and Control, BSP Publication.

Reference Books:

- 1. Kimbark E W, Power System Stability, Volume I, III, Wiley publication.
- **2.** Jr W.D. Stevenson., G. J. Grainger. Elements of Power System. Mc-Graw-Hill Publication.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2).

The distribution of marks for term work shall be as follows:

Tutorials:15 marksAssignments:05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
EEDLO 8044	Power System Planning and Reliability (abbreviated as PSPR)	3	1	3	1	4			

	Course Name	Examination Scheme							
Course									
code		Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	10141	
					Exam	(Hrs.)			
EEDI O	Power System								
8044	Planning and	20	20	20	80	03	25	125	
0044	Reliability								

Course	• To understand the different power system planning and forecasting,
Objectives	techniques and reliability evaluation in terms of basic reliability indices.
	Students will be able
Course Outcomes	 To make a Generation System Model for the Power system in terms of frequency and duration of failure. To calculate reliability indices of the power system based on system model and the load curve. To plan a small Generation and Transmission system, predict its behavior, and do the required change in order to achieve reliability.

Module	Contents	Hours
1	Load Forecasting: Introduction, Classification of Load, Load Growth	06
	Characteristics, Peak Load Forecasting, Extrapolation and Co-Relation	
	methods of load Forecasting, Reactive Load Forecasting, Impact of	
	weather on load forecasting.	
2	System Planning: Introduction to System Planning, Short, Medium and	06
	Long Term strategic planning, Reactive Power Planning. Introduction to	
	Generation and Network Planning.	
3	Reliability of Systems:	08
	Concepts, Terms and Definitions, Reliability models, Markov process,	
	Reliability function, Hazard rate function, Bathtub Curve. Serial	
	Configuration, Parallel Configuration, Mixed Configuration of systems,	
	Minimal Cuts and Minimal Paths, Methods to find Minimal Cut Sets,	
	System reliability using conditional probability method, cut set method	
	and tie set method.	
4	Generating Capacity:	08
	Basic Probability Methods introduction, Generation system model,	
	capacity outage probability table, recursive algorithm, Evaluation of:	
	loss of load indices, Loss of load expectation, Loss of energy. Frequency	
	and Duration Method basic concepts, Numerical based on Frequency	
	and Duration method.	

5	Operating Reserve:	04
	General concept, PJM method, Modified PJM method.	
6	Composite generation and transmission system:	04
	Data requirement, Outages, system and load point indices, Application	
	to simple system	

Text Books:

- 1. Power System Planning R.L. Sullivan, Tata McGraw Hill Publishing Company
- 2. Electrical Power System Planning A.S Pabla, Macmillan India Ltd.
- 3. Reliability Evaluation of Power System Roy Billinton and Ronald N Allan, Springer Publishers

Reference Books:

- 1. Reliability Assessment of Large Electric Power Systems Roy Billinton and Ronald N Allan, Kluwer academic publishers, 1988
- 2. Reliability Evaluation of Engineering System- Roy Billinton and Ronald N Allan, Springer Publishers
- 3. Electrical Power System Planning: Issues, Algorithms and Solutions Hossein Seifi and M.S Sepasian, Springer Publishers
- 4. Modern Power System Planning X. Wang and J.R. McDonald, McGraw Hill

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2)..

The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
		Theory	Tutorial	Theory	Tutorial	Total	
ILO8021	Project Management (abbreviated as PM)	3	-	3	-	3	

		Examination Scheme							
Course	Course Name								
Course		Internal Assessment			End	Exam	Term	Total	
couc		Toot 1	Tost 2	Ava	Sem.	Duration	Work	Totai	
		Test I	Test 2	Avg.	Exam	(Hrs.)			
ILO8021	Project Management	20	20	20	80	03	-	100	

Course Objectives	 To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.
Course Outcomes	 Student will be able to Apply selection criteria and select an appropriate project from different options. Write work break down structure for a project and develop a schedule based on it. Identify opportunities and threats to the project and decide an approach to deal with them strategically. Use Earned value technique and determine & predict status of the project. Capture lessons learned during project phases and document them for future reference

Module	Contents	Hours
1	Project Management Foundation: Definition of a project, Project Vs	5
	Operations, Necessity of project management, Triple constraints, Project	
	life cycles (typical & atypical) Project phases and stage gate process.	
	Role of project manager. Negotiations and resolving conflicts. Project	
	management in various organization structures. PM knowledge areas as	
	per Project Management Institute (PMI).	
2	Initiating Projects: How to get a project started, Selecting project	6
	strategically, Project selection models (Numeric /Scoring Models and	
	Non-numeric models), Project portfolio process, Project sponsor and	
	creating charter; Project proposal. Effective project team, Stages of	
	team development & growth (forming, storming, norming &	
	performing), team dynamics.	
3	Project Planning and Scheduling: Work Breakdown structure (WBS)	8
	and linear responsibility chart, Interface Co-ordination and concurrent	
	engineering, Project cost estimation and budgeting, Top down and	

	bottoms up budgeting, Networking and Scheduling techniques. PERT,	
	CPM, GANTT chart. Introduction to Project Management Information	
	System (PMIS).	
4	Planning Projects: Crashing project time, Resource loading and	6
	leveling, Goldratt's critical chain, Project Stakeholders and	
	Communication plan. Risk Management in projects: Risk management	
	planning, Risk identification and risk register. Qualitative and	
	quantitative risk assessment, Probability and impact matrix. Risk	
	response strategies for positive and negative risks	
5	Executing Projects: Planning monitoring and controlling cycle.	8
_	Information needs and reporting, engaging with all stakeholders of the	-
	projects. Team management, communication and project meetings	
	Monitoring and Controlling Projects. Farned Value Management	
	techniques for measuring value of work completed: Using milestones for	
	measurement: change requests and scope creep. Project audit	
	Project Contracting Project procurement management contracting and	
	autooutroing	
	Dussourchig,	(
0	Project Leadership and Ethics: Introduction to project leadership,	0
	ethics in projects. Multicultural and virtual projects.	
	Closing the Project: Customer acceptance; Reasons of project	
	termination, Various types of project terminations (Extinction,	
	Addition, Integration, Starvation), Process of project termination,	
	completing a final report; doing a lessons learned analysis;	
	acknowledging successes and failures; Project management templates	
	and other resources; Managing without authority; Areas of further study.	

Reference Books:

- Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
Code		Theory	Tutorial	Theory	Tutorial	Total	
ILO8022	Finance Management (abbreviated as FM)	3	-	3	-	3	

		Examination Scheme							
Course	Course Name								
Course		Internal Assessment			End	Exam	Term	Total	
couc		Toot 1	Tost 2	Aug	Sem.	Duration	Work	Total	
		Test I	Test 2	Avg.	Exam	(Hrs.)			
ILO8022	Finance Management	20	20	20	80	03	-	100	

Course Objectives	 Overview of Indian financial system, instruments and market Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
objectives	 Knowledge about sources of finance, capital structure, dividend policy
Course	Student will be able to
Outcomes	• Understand Indian finance system and corporate finance
	• Take investment, finance as well as dividend decisions

Module	Contents	Hours
1	Overview of Indian Financial System: Characteristics, Components	6
	and Functions of Financial System. Financial Instruments: Meaning,	
	Characteristics and Classification of Basic Financial Instruments -	
	Equity Shares, Preference Shares, Bonds-Debentures, Certificates of	
	Deposit, and Treasury Bills. Financial Markets: Meaning,	
	Characteristics and Classification of Financial Markets - Capital	
	Market, Money Market and Foreign Currency Market. Financial	
	Institutions: Meaning, Characteristics and Classification of Financial	
	Institutions — Commercial Banks, Investment-Merchant Banks and	
	Stock Exchanges	
2	Concepts of Returns and Risks: Measurement of Historical Returns	6
	and Expected Returns of a Single Security and a Two-security Portfolio;	
	Measurement of Historical Risk and Expected Risk of a Single Security	
	and a Two-security Portfolio.	
	Time Value of Money: Future Value of a Lump Sum, Ordinary	
	Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary	
	Annuity, and Annuity Due; Continuous Compounding and Continuous	
	Discounting.	
3	Overview of Corporate Finance: Objectives of Corporate Finance;	9
	Functions of Corporate Finance-Investment Decision, Financing	
	Decision, and Dividend Decision.	
	Financial Ratio Analysis: Overview of Financial Statements—Balance	
	Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of	
	Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity	
	Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market	

	Ratios; Limitations of Ratio Analysis.	
4	Capital Budgeting: Meaning and Importance of Capital Budgeting;	10
	Inputs for Capital Budgeting Decisions; Investment Appraisal	
	Criterion—Accounting Rate of Return, Payback Period, Discounted	
	Payback Period, Net Present Value(NPV), Profitability Index, Internal	
	Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)	
	Working Capital Management: Concepts of Meaning Working	
	Capital; Importance of Working Capital Management; Factors Affecting	
	an Entity's Working Capital Needs; Estimation of Working Capital	
	Requirements; Management of Inventories; Management of	
	Receivables; and Management of Cash and Marketable Securities.	

Reference Books:

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
	Entrepreneurship			3	-	3		
11 (18023	Development and	3						
11.00025	Management		-					
	(abbreviated as EDM)							

				Exa	mination	Scheme		
Course			Γ		у			
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Totai
		Test I	Test 2	Avg.	Exam	(Hrs.)		
	Entrepreneurship							
ILO8023	Development and	20	20	20	80	03	-	100
	Management							

Course	• To acquaint with entrepreneurship and management of business
Objectives	• Understand Indian environment for entrepreneurship
	• Idea of EDP, MSME
	Student will be able to
Course	 Understand the concept of business plan and ownerships
Outcomes	• Interpret key regulations and legal aspects of entrepreneurship in India
	Understand government policies for entrepreneurs

Module	Contents	Hours
1	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	4
2	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations	9
3	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	5
4	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies	8

	of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	
5	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	8
6	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	5

Reference Books:

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Cree	dits Assigne	ed		
		Theory	Tutorial	Theory	Tutorial	Total		
ILO8024	Human Resource Management (abbreviated as HRM)	3	-	3	-	3		

		Examination Scheme							
Course				Theor	у				
Course	Course Name	Interna	al Assess	ment	End	Exam	Term	Total	
coue		Test 1	Tost 2	Aug	Sem.	Duration	Work	Total	
		Test I	I ESt Z	Avg.	Exam	(Hrs.)			
ILO8024	Human Resource Management	20	20	20	80	03	-	100	

	• To introduce the students with basic concepts, techniques and practices of
	the human resource management.
	• To provide opportunity of learning Human resource Management (HRM)
	processes, related with the functions, and challenges in the emerging
	nerspective.
Course	• To familiarize the students about the latest developments, trends & different
Course	• To faminarize the students about the fatest developments, itelds & different
Objectives	aspects of HRM.
	• To acquaint the student with the importance of behavioral skills, Inter-
	personal, inter- group in an organizational setting.
	• To prepare the students as future organizational change facilitators, stable
	leaders and managers, using the knowledge and techniques of human
	resource management.
	Learner will be able to
	• Gain knowledge and understand the concepts about the different aspects of
	the human resource management.
	• Understand and tackle the changes and challenges in today's diverse
Course	dynamic organizational setting and culture
Outcomes	Utilize the helperional shill sets beaut in marking with different merels
Outcomes	• Utilize the behavioral skill sets learnt, in working with different people,
	teams & groups within the national and global environment.
	• Apply the acquired techniques, knowledge and integrate it within the
	engineering/ non engineering working environment emerging as future
	engineers and managers.

Module	Contents								
1	Introduction to HR: Human Resource Management- Concept, Scope								
	and Importance, Interdisciplinary Approach Relationship with other								
	Sciences, Competencies of HR Manager, HRM functions. Human								
	resource development (HRD): changing role of HRM – Human resource								
	Planning, Technological change, Restructuring and rightsizing,								

	Empowerment, TQM, Managing ethical issues.	
2	Organizational Behavior (OB) : Introduction to OB Origin, Nature and	07
	Scope of Organizational Behavior, Relevance to Organizational	
	Effectiveness and Contemporary issues, Personality: Meaning and	
	Determinants of Personality, Personality development, Personality	
	Types, Assessment of Personality Traits for Increasing Self Awareness,	
	Perception: Attitude and Value, Effect of perception on Individual	
	Decision-making, Attitude and Behavior. Motivation: Theories of	
	Motivation and their Applications for Behavioral Change (Maslow,	
	Herzberg, McGregor); Group Behavior and Group Dynamics: Work	
	groups formal and informal groups and stages of group development.	
	Team Effectiveness: High performing teams, Team Roles, cross	
	functional and self-directed team. Case study	
3	Organizational Structure & Design: Structure, size, technology,	06
	Environment of organization; Organizational Roles & conflicts: Concept	
	of roles; role dynamics; role conflicts and stress. Leadership: Concepts	
	and skills of leadership, Leadership and managerial roles, Leadership	
	styles and contemporary issues in leadership. Power and Politics:	
	Sources and uses of power; Politics at workplace, Tactics and strategies.	
4	Human resource Planning: Recruitment and Selection process, Job-	05
	enrichment, Empowerment - Job-Satisfaction, employee morale.	
	Performance Appraisal Systems: Traditional & modern methods,	
	Performance Counseling, Career Planning. Training & Development:	
	Identification of Training Needs, Training Methods	
5	Emerging Trends in HR : Organizational development; Business	06
	Process Re-engineering (BPR), BPR as a tool for organizational	
	development , managing processes & transformation in HR.	
	Organizational Change, Culture, Environment, Cross Cultural	
	Leadership and Decision Making: Cross Cultural Communication and	
	diversity at work, Causes of diversity, managing diversity with special	
	reference to handicapped, women and ageing people, intra company	
	cultural difference in employee motivation.	
6	HR & MIS: Need, purpose, objective and role of information system in	10
	HR, Applications in HRD in various industries (e.g. manufacturing	
	R&D, Public Transport, Hospitals, Hotels and service industries	
	Strategic HRM	
	Role of Strategic HRM in the modern business world, Concept of	
	Strategy, Strategic Management Process, Approaches to Strategic	
	Decision Making; Strategic Intent – Corporate Mission, Vision,	
	Objectives and Goals	
	Labor Laws & Industrial Relations	
	Evolution of IR, IR issues in organizations, Overview of Labor Laws in	
	India; Industrial Disputes Act, Trade Unions Act, Shops and	

ct

Reference Books:

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO8025	Professional Ethics and Corporate Social Responsibility (abbreviated as PECSR)	3	-	3	-	3			

		Examination Scheme								
Course										
Course	Course Name	Internal Assessment			End	Exam	Term	Total		
coue		Toot 1	Tost 2	Ava	Sem.	Duration	Work	Totai		
		Test I	Test 2	Avg.	Exam	(Hrs.)				
	Professional Ethics and									
ILO8025	Corporate Social Responsibility	20	20	20	80	03	-	100		

Course	• To understand professional ethics in business			
Objectives	• To recognized corporate social responsibility			
	Student will be able to			
Course	• Understand rights and duties of business			
Outcomes	• Distinguish different aspects of corporate social responsibility			
Outcomes	 Demonstrate professional ethics 			
	Understand legal aspects of corporate social responsibility			

Module	Contents	Hours								
1	Professional Ethics and Business: The Nature of Business Ethics;	04								
	Ethical Issues in Business; Moral Responsibility and Blame;									
	Utilitarianism: Weighing Social Costs and Benefits; Rights and Duties									
	of Business									
2	Professional Ethics in the Marketplace: Perfect Competition;	08								
	Monopoly Competition; Oligopolistic Competition; Oligopolies and									
	Public Policy									
	Professional Ethics and the Environment: Dimensions of Pollution									
	and Resource Depletion; Ethics of Pollution Control; Ethics of									
	Conserving Depletable Resources									
3	Professional Ethics of Consumer Protection: Markets and Consumer	06								
	Protection; Contract View of Business Firm's Duties to Consumers; Due									
	Care Theory; Advertising Ethics; Consumer Privacy									
	Professional Ethics of Job Discrimination: Nature of Job									
	Discrimination; Extent of Discrimination; Reservation of Jobs.									
4	Introduction to Corporate Social Responsibility: Potential Business	05								
	Benefits—Triple bottom line, Human resources, Risk management,									
	Supplier relations; Criticisms and concerns-Nature of business;									

	Motives; Misdirection.	
	Trajectory of Corporate Social Responsibility in India	
5	Corporate Social Responsibility: Articulation of Gandhian Trusteeship	08
	Corporate Social Responsibility and Small and Medium Enterprises	
	(SMEs) in India, Corporate Social Responsibility and Public-Private	
	Partnership (PPP) in India	
6	Corporate Social Responsibility in Globalizing India: Corporate	08
	Social Responsibility Voluntary Guidelines, 2009 issued by the Ministry	
	of Corporate Affairs, Government of India, Legal Aspects of Corporate	
	Social Responsibility—Companies Act, 2013.	

Reference Books:

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO8026	Research Methodology (abbreviated as RM)	3	-	3	-	3			

Course	Course Name	Examination Scheme							
code		Internal Assessment			End	Exam	Term	Total	
coue		Toot 1	Tost 2	Aug	Sem.	Duration	Work	Total	
		Iest I	Iest Z	Avg.	Exam	(Hrs.)			
ILO8026	Research Methodology	20	20	20	80	03	-	100	

Course Objectives	 To understand Research and Research Process To acquaint students with identifying problems for research and develop research strategies To familiarize students with the techniques of data collection, analysis of data and interpretation
Course Outcomes	 Student will be able to Prepare a preliminary research design for projects in their subject matter areas Accurately collect, analyze and report data Present complex data or situations clearly Review and analyze research findings

Module	Contents	Hours						
1	Introduction and Basic Research Concepts: Research – Definition;	10						
	Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law,							
	Principle. Research methods vs Methodology, Need of Research in							
	Business and Social Sciences, Objectives of Research, Issues and							
	Problems in Research, Characteristics of Research: Systematic, Valid,							
	Verifiable, Empirical and Critical							
2	Types of Research: Basic Research, Applied Research, Descriptive	08						
	Research, Analytical Research, Empirical Research, Qualitative and							
	Quantitative Approaches							
3	Research Design and Sample Design : Research Design - Meaning,	08						
	Types and Significance, Sample Design - Meaning and Significance							
	Essentials of a good sampling Stages in Sample Design Sampling							
	methods/techniques Sampling Errors							
4	Research Methodology : Meaning of Research Methodology, Stages in	08						
	Scientific Research Process							
	a. Identification and Selection of Research Problem							
	b. Formulation of Research Problem							
	c. Review of Literature							
	d. Formulation of Hypothesis							

	e. Formulation of research Design	
	f. Sample Design	
	g. Data Collection	
	h. Data Analysis	
	i. Hypothesis testing and Interpretation of Data	
	j. Preparation of Research Report	
5	Formulating Research Problem: Considerations: Relevance, Interest,	04
	Data Availability, Choice of data, Analysis of data, Generalization and	
	Interpretation of analysis	
6	Outcome of Research: Preparation of the report on conclusion reached,	04
	Validity Testing & Ethical Issues, Suggestions and Recommendation	

Reference Books:

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
Coue		Theory	Tutorial	Theory	Tutorial	Total		
ILO8027	IPR and Patenting (abbreviated as IPRP)	3	-	3	-	3		

Course	Course Name	Examination Scheme							
code		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
ILO8027	IPR and Patenting	20	20	20	80	03	-	100	

	To understand intellectual property rights protection system					
~	• To promote the knowledge of Intellectual Property Laws of India as well					
Course	as International treaty procedures					
Objectives	• To get acquaintance with Patent search and patent filing procedure and					
	applications					
	Student will be able to					
Course	understand Intellectual Property assets					
Outcomes	 assist individuals and organizations in capacity building 					
	• work for development, promotion, protection, compliance, and					
	enforcement of Intellectual Property and Patenting					

Module	Contents	Hours
1	Introduction to Intellectual Property Rights (IPR): Meaning of IPR,	05
	Different category of IPR instruments - Patents, Trademarks,	
	Copyrights, Industrial Designs, Plant variety protection, Geographical	
	indications, Transfer of technology etc.	
	Importance of IPR in Modern Global Economic Environment:	
	Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR	
	as an instrument of development	
2	Enforcement of Intellectual Property Rights: Introduction, Magnitude	07
	of problem, Factors that create and sustain counterfeiting/piracy,	
	International agreements, International organizations (e.g. WIPO, WTO)	
	activein IPR enforcement	
	Indian Scenario of IPR: Introduction, History of IPR in India,	
	Overview of IP laws in India, Indian IPR, Administrative Machinery,	
	Major international treaties signed by India, Procedure for submitting	
	patent and Enforcement of IPR at national level etc.	
3	Emerging Issues in IPR: Challenges for IP in digital economy, e-	06
	commerce, human genome, biodiversity and traditional knowledge etc.	
4	Basics of Patents: Definition of Patents, Conditions of patentability,	07

	Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method of getting a patent	
5	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	08
6	 Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publicationetc, Time frame and cost, Patent Licensing, Patent Infringement Patent databases: Important websites, Searching international databases 	07

Reference Books:

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield,2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- Cornish, William Rodolph&Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- LousHarns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. PrabhuddhaGanguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar andmohdIqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. KompalBansal and PraishitBansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, PritiMathur, AnshulRathi, IPR: Drafting,Interpretation of Patent Specifications and Claims, New India Publishing Agency

- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO8028	Digital Business Management (abbreviated as DBM)	3	-	3	-	3			

		Examination Scheme							
Course	Course Name								
course		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Tost 2	Ava	Sem.	Duration	Work	Total	
		Test I	Test Z	Avg.	Exam	(Hrs.)			
ILO8028	Digital Business Management	20	20	20	80	03	-	100	

Course	 To familiarize with digital business concept To acquaint with E-commerce
Objectives	 To give insights into E-business and its strategies
Course Outcomes	Student will be able to
	 Identify drivers of digital business Illustrate various approaches and techniques for E-business and management
	 Prepare E-business plan

Module	Contents	Hours
1	Introduction to Digital Business: Introduction, Background and	09
	current status, E-market places, structures, mechanisms, economics and	
	impacts Difference between physical economy and digital economy,	
	Drivers of digital business- Big Data & Analytics, Mobile, Cloud	
	Computing, Social media, BYOD, and Internet of Things(digitally	
	intelligent machines/services) Opportunities and Challenges in Digital	
	Business,	
2	Overview of E-Commerce: E-Commerce- Meaning, Retailing in e-	06
	commerce-products and services, consumer behavior, market research	
	and advertisement B2B-E-commerce-selling and buying in private e-	
	markets, public B2B exchanges and support services, e-supply chains,	
	Collaborative Commerce, Intra business EC and Corporate portals Other	
	E-C models and applications, innovative EC System-From E-	
	government and learning to C2C, mobile commerce and pervasive	
	computing EC Strategy and Implementation-EC strategy and global EC,	
	Economics and Justification of EC, Using Affiliate marketing to	
	promote your e-commerce business, Launching a successful online	
	business and EC project, Legal, Ethics and Societal impacts of EC	
3	Digital Business Support services: ERP as e -business backbone,	06
	knowledge Tope Apps, Information and referral system, Application	

	Development: Building Digital business Applications and Infrastructure	
4	Managing E-Business-Managing Knowledge, Management skills for	06
	e-business, Managing Risks in e -business, Security Threats to e-	
	business -Security Overview, Electronic Commerce Threats, Encryption,	
	ryptography, Public Key and Private Key Cryptography, Digital	
	Signatures, Digital Certificates, Security Protocols over Public	
	Networks: HTTP, SSL, Firewall as Security Control, Public Key	
	Infrastructure (PKI) for Security, Prominent Cryptographic Applications	
5	E-Business Strategy-E-business Strategic formulation- Analysis of	04
	Company's Internal and external environment, Selection of strategy,	
	E-business strategy into Action, challenges and E-Transition	
	(Process of Digital Transformation)	
6	M Materializing e-business: From Idea to Realization-Business plan	08
	preparation	
	Case Studies and presentations	

Reference Books:

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, Vinocenzo Morabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:<u>10.1787/9789264221796-en</u> OECD Publishing

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO8029	Environmental Management (abbreviated as EVM)	3	-	3	-	3			

		Examination Scheme							
Course	Course Name								
course		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Tost 2	Ava	Sem.	Duration	Work	Total	
		Test I	Test Z	Avg.	Exam	(Hrs.)			
ILO8029	Environmental Management	20	20	20	80	03	-	100	

Course Objectives	• Understand and identify environmental issues relevant to India and global			
	concerns			
	• Learn concepts of ecology			
	Familiarise environment related legislations			
	Student will be able to			
Course Outcomes	• Understand the concept of environmental management			
	• Understand ecosystem and interdependence, food chain etc.			
	Understand and interpret environment related legislations			

Module	Contents	Hours
1	Introduction and Definition of Environment: Significance of	10
	Environment Management for contemporary managers, Career	
	opportunities.	
	Environmental issues relevant to India, Sustainable Development, The	
	Energy scenario.	
2	Global Environmental concerns : Global Warming, Acid Rain, Ozone	06
	Depletion, Hazardous Wastes, Endangered life-species, Loss of	
	Biodiversity, Industrial/Man-made disasters, Atomic/Biomedical	
	hazards, etc.	
3	Concepts of Ecology: Ecosystems and interdependence between living	05
	organisms, habitats, limiting factors, carrying capacity, food chain, etc.	
4	Scope of Environment Management, Role & functions of Government	10
	as a planning and regulating agency.	
	Environment Quality Management and Corporate Environmental	
	Responsibility	
5	Total Quality Environmental Management, ISO-14000, EMS	05
	certification.	
6	General overview of major legislations like Environment Protection Act,	03
	Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest	
	Act, Factories Act, etc.	

Reference Books:

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course Code	Course Name	Teaching Scheme (Contact Hours)		Credits Assigned			
		Theory	Practical	Theory	Practical	Total	
EEL801	Simulation Lab- IV (abbreviated as Sim Lab- IV)	-	2	-	1	1	

Course Code	Course Name	Examination Scheme							
		Theory			Practical				
		Internal Assessment		End	Torm	Pract.		Total	
		Test 1	Test 2	Avg.	Sem.	Work	and	Oral	
					Exam		Oral		
EEL801	Simulation Lab- IV	-	-	-	-	25	-	25	50

Course	To design the transmission systems with various FACTS controllers		
Objectives	To design various electrical system		
	Student will be able to		
Course Outcomes	• Analyze the transmission line performance with and without FACTS controllers using simulations.		
	• Analyze the operation of various electrical systems using simulation.		

Syllabus: Same as that of Courses of Sem-VIII

Suggested List of Laboratory Experiment: Software Based Design and Implementation /Sir

- Software Based Design and Implementation /Simulation
 - 1. PCB Design and Implementation for any of the electrical application using suitable CAD software
 - 2. Simulation of any of the electrical circuits using circuit simulator software
 - 3. PCB design for implementation of Basic electrical network theorem based experiments
 - 4. Software based design of Solar PV power generating plant
 - 5. Software Based Lighting system design for Indoor or Outdoor application
 - 6. Virtual Instrumentation Software based circuit implementation
 - 7. Load Compensation
 - 8. FACTS Controllers
 - 9. Simulations based on Department/Institute Level Optional Courses

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum eight experiments. The distribution of marks shall be as follows:

Experiments Performance :10 marks

Journal :10 marks

Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.
University of Mumbai							
Course Code	Course Name	Teachin (Conta	ng Scheme ct Hours)	Credits Assigned			
		Theory	Practical	Theory	Practical	Total	
	Electrical System Design						
EEL802	Lab	-	2	-	1	1	
	(abbreviated as ESD Lab)						

Course Code	Course Name	Examination Scheme							
			The	ory		Practical			Total
		Internal Assessment			End	Torm	Pract.		
		Test 1	Test 2	Avg.	Sem. Exam	Work	and	Oral	
							Oral		
	Electrical								
EEL802	System Design	-	-	-	-	25	-	25	50
	Lab								

Course Objectives	• To impart hardware knowledge related to electrical system in the students
Course	Student will be able to
Outcomes	Design electrical system for different applications.

Syllabus: Same as that of Courses of Sem-VIII

Suggested List of Laboratory Experiment:

Design and Implementation of Hardware Circuits

- 1. Design of basic electrical network theorem based experiments
- 2. Design and Implementation of Single /Multi output Power supply
- 3. Design and Implementation of Multi output Switched Mode Power supply
- 4. Design and Implementation of DOL/Star delta starter for Electrical Machines
- 5. Design and Implementation of Electro-magnetic relays based on/off control of Electrical loads
- 6. Design and Implementation of Auxiliary Circuits for Power Electronics Applications: (a) Gate drive circuits (b) Snubber circuits
- 7. Design and Implementation of High frequency magnetics
- 8. Design and Implementation of Buck/Boost/ Buck-boost dc-dc Converter.
- 9. Design and Implementation of Voltage and Current sensing circuits in DC and AC circuits
- 10. Design and Implementation Signal Processing amplifier system for sensor outputs
- 11. Design and Implementation of a closed loop controlled converter/Inverter circuit
- 12. Solar Photovoltaic fed Battery charge controller
- 13. IoT based Home automation System
- 14. Design and Implementation of small scale Solar PV (upto 2 kW) power generating plant.

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum three experiments. The distribution of marks shall be as follows:

Experiments Performance	:15 marks
Journal	:05 marks
Attendance (Theory and Practical)	:05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.

University of Mumbai							
Course	Course Name	Teachin (Conta	ng Scheme ct Hours)	Credits Assigned			
Coue		Theory	Practical	Theory	Practical	Total	
EEL703/EEL803	Project-I/II	-	6/12	-	3/6	3/6	

	Course Name	Examination Scheme							
		Theory				Practical			
Course Code		Internal Assessment			End Sem	Term	Pract.	Oral	Total
		Test 1	Test 2	Avg.	Exam	Work	Oral	Orai	
EEL703/EEL803	Project- I/II	-	-	-	-	25/50	-	25/50	50/100

Course Objectives	 To acquaint with the process of undertaking literature survey/industrial visit and identifying the problem To familiarize the process of problem solving in a group To acquaint with the process of applying basic engineering fundamental in the domain of practical applications To inculcate the process of research
Course Outcomes	 Student will be able to Do literature survey/industrial visit and identify the problem Apply basic engineering fundamental in the domain of practical applications Cultivate the habit of working in a team Attempt a problem solution in a right approach Correlate the theoretical and experimental/simulations results and draw the proper inferences Prepare report as per the standard guidelines

Guidelines for Project

Students should do literature survey/visit industry/analyse current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor.

Students should use multiple literatures and understand the problem.

Students should attempt solution to the problem by experimental/simulation methods. The solution to be validated with proper justification and report to be compiled in standard format.

Guidelines for Assessment of Project I

Project I should be assessed based on following points

- 1. Quality of problem selected
- 2. Clarity of Problem definition and Feasibility of problem solution

- 3. Relevance to the specialization
- 4. Clarity of objective and scope
- 5. Breadth and depth of literature survey

Project Report has to be prepared strictly as per University of Mumbai report writing guidelines. Project I should be assessed through a presentation by the student project group to a panel of Internal and External Examiner approved by the University of Mumbai

Guidelines for Assessment of Project II

Project II should be assessed based on following points

- 1. Quality of problem selected
- 2. Clarity of Problem definition and Feasibility of problem solution
- 3. Relevance to the specialization / Industrial trends
- 4. Clarity of objective and scope
- 5. Quality of work attempted
- 6. Validation of results
- 7. Quality of Written and Oral Presentation

Project Report has to be prepared strictly as per University of Mumbai report writing guidelines. Project II should be assessed through a presentation by the student project group to a panel of Internal and External Examiner approved by the University of Mumbai Students should be motivated to publish a paper in Conferences/students competitions based on the work.

Faculty Load

In semester VII - 1 (one) period of 1/2 hour per week per project group

In semester VIII - 2 (Two) period of 1 hour each per week per project group